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Lecture11: Searching and Sorting



Search in an array

Suppose that an array of strings contains

3

Q. How many compares for a successful search for mint using: 

• binary search? 

• sequential search? 

Q. How many compares for an unsuccessful search for pistachio using: 

• binary search? 

• sequential search? 

a[0] black raspberry

a[1] chocolate

a[2] cookie dough

a[3] coffee

a[4] mint

a[5] strawberry

a[6] vanilla



Sorting performance

4

Q. The following tables are performance results for algorithms that sort 10-character strings. 
Label each as insertion sort or mergesort.



Sorting and searching performance

5

Q. To the right of each option, fill in the circle corresponding to the one-word characterization 
 that best describes the order of growth of the worst-case running time.

logarithmic linear linearithmic quadratic

mergesort ⃝ ⃝ ⃝ ⃝

merge ⃝ ⃝ ⃝ ⃝

binary search ⃝ ⃝ ⃝ ⃝

BST search ⃝ ⃝ ⃝ ⃝

insertion sort ⃝ ⃝ ⃝ ⃝

sequential search ⃝ ⃝ ⃝ ⃝

bubble sort ⃝ ⃝ ⃝ ⃝

10%                23%                 22%                 38%



Lecture 12: Stacks and Queues



Pushdown stack

7

Q. In the following, interpret 

• a letter to mean push 

• a minus sign to mean pop

1. Starting with an empty stack, give the contents of the stack after 
 
               a - b c - d e - f g h - - i

2. Suppose that the standard array representation was used for the stack.  
    Give the contents of the array after 
 
               a - b c - d e - f g h - - i



Prefix/infix

8

Q. Give an infix expression corresponding to each of the following prefix expressions.

3 7 + 4 6 + * 

20 35 7 / 4 * + 

63 3 / 17 - 0 * 2 + 

1 2 4 / + 4 8 / + 6 3 / -



Lecture 13: Symbol Tables



Sorting and searching performance

10

Q. To the right of each option, fill in the circle corresponding to the one-word characterization 
 that best describes the order of growth of the worst-case running time.

logarithmic linear linearithmic quadratic

mergesort ⃝ ⃝ ⃝ ⃝

merge ⃝ ⃝ ⃝ ⃝

binary search ⃝ ⃝ ⃝ ⃝

BST search ⃝ ⃝ ⃝ ⃝

insertion sort ⃝ ⃝ ⃝ ⃝

sequential search ⃝ ⃝ ⃝ ⃝

bubble sort ⃝ ⃝ ⃝ ⃝

10%                23%                 22%                 38%



Searching scalability
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Q. An algorithm is scalable if it can accommodate an unpredictable mix of operations 
for a large amount of data, even as the amount of data grows. 

Which of the following data structures admits scalable symbol-table algorithms?

scalable?

array ⃝

linked list ⃝

BST ⃝



Legal BST
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Q. Is this a BST?

A. No.

4

18

7

11

8

16

20



BST construction

13

Q. Match the key sequences with the BST produced by inserting them in order 
into an initially empty tree.

G  Z  F  B  M  P  H 

F  P  Z  H  G  M  B 

A

B

C
D

M  P  Z  B  G  F  H 

Z  B  P  F  M  G  H



Tree labeling

14

Q. How many ways to assign N keys to a give N-node tree?

A. Only one (!)

B   F   G   H   M   P   Z 

B

F

G

H

M

P

Z



Tree height
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Q. Give the height of the BST produced by inserting keys in the order given 
into an initially empty BST.

10, 11, 20, 30, 32, 48, 60 7

10, 20, 32, 11, 30, 48, 60

30, 10, 20, 11, 60, 48, 32

20, 11, 10, 30, 32, 60, 48



Tree sequences

16

Q. Which of the following could not have been the sequence of keys examined 
 to search for 70 in a BST?

77, 41, 99, 20, 85, 70

99, 10, 80, 20, 60, 70

5, 10, 80, 40, 32, 50, 70

22, 58, 81, 70



Order statistics
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Q. Identify the smallest, largest, and median.

4

16

7

11

18

20

52

51

38



Tree enumeration
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Q. How many different trees of 3 nodes? 4?

A. Catalan numbers.



Lecture 14: Intro to Theory of Computing



REs

Q. How do know what language is described by an RE?

20

Ex. Fall 2014 Question 5. 

Let L = { ab, aaab, aaaab, aabaab, aabaaab }.  

Write 1, 2, 3, or 4 to indicate whether the RE 
1. Matches no strings in L. 
2. Matches only some strings in L and some other strings. 
3. Matches all strings in L and some other strings. 
4. Matches all strings in L and no other strings.

(aa*b)* 3

a*b* 2

(a|b)*ab 3

a*baba*b* 1

(ab)|(a(a|aba)(a|aa)b) 4

a*baaa*b* 2



Q. Match the REs with the DFAs.
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A a*|(a*ba*ba*ba*)*

B (ab)*

C (a*b)+

D ba*
C

D

A

B



Lecture 15: Turing Machines



Tracing TMs

Q. How do we trace a Turing Machine?

23

Ex. Fall 2014 Question 5.

The incomplete T M at left is supposed to write onto 
its tape the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 
…, but in unary notation: 1, 1, 11, 111, 11111, 
11111111, 1111111111111.

This T M uses the symbols A, B, and C to delineate 
the two most recently computed Fibonacci numbers. 
Here is the tape before computing Fibonacci number 
5, with the tape head positioned at the C:

Fill in exactly one symbol in each of the 4 empty 
boxes to complete the design of this T M. You may 
assume that the initial contents of the tape and the 
position of the tape head are as given above and 
that the machine starts in the middle state.

# 1 # 1 A 1 1 B 1 1 1 C # # # # # #



` 

Q. How do we trace a T M?

Ex. Fall 2014 Question 5.

1

B

B

#

# 1 # 1 A 1 1 B 1 1 1 C # # # # # #scan left 
for 1 or A

# 1 # 1 A 0 0 B 0 0 0 C 0 0 0 0 0 #scan left 
for 1 or A

# 1 # 1 # 0 0 B 0 0 0 C 0 0 0 0 0 #scan right for        

# 1 # 1 # 1 1 A 1 1 1 B 1 1 1 1 1 C #scan left 
for 1 or A

# 1 # 1 A 1 1 B 1 1 0 C # # # # # #scan right 
for #

# 1 # 1 A 1 1 B 1 1 0 C 0 # # # # #scan left 
for 1 or A

. . .

. . .

0, B, or C
change 0 to 1
change B to A
change C to B



Computability

Spring 2015 Q5
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Turing 
Machine

TOY with 
sufficient 
memory

DFA None of 
these

Can perform any possible computation (if the 
Church-Turing thesis holds). ✓ ✓ ✗ ✗

Cannot express some Java programs ✗ ✗ ✓ ✗

Cannot be simulated in Java ✗ ✗ ✗ ✓

Always halts on all finite inputs ✗ ✗ ✓ ✗

Can always correctly check whether an arbitrary 
Java program goes into a loop. ✗ ✗ ✗ ✓



Computability

Spring 2011 Q8
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There exists a mathematical function that can be computed 
in Java, but cannot be computed on a Turing machine. B

There exists a mathematical function that can be computed 
in polynomial time on a quantum computer, but cannot be 
computed in polynomial time on a Turing machine. Assume 
that quantum computers can be built.

D

There exists a mathematical function that can be computed 
in polynomial time in Java, but cannot be computed in 
polynomial time on a Turing machine.

B

There exists a Turing machine that can simulate the 
behavior of any other Turing machine. A

A known to be true

B known to be false

C if true would falsify the 
Church-Turing thesis

D
if true would falsify the 
extended Church-
Turing thesis

E if true would prove the 
Church-Turing thesis



Lecture 16: Intractability



Polynomial vs. Exponential

28

Circle the largest value, for N = 10 N 100 1000N 3 2N

Circle the largest value, for N = 100 N 100 1000N 3 2N

Circle the largest value, for N = 1000 N 100 1000N 3 2N



Vertex cover

Exercise 5.5.6
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Find a minimum-cardinality vertex cover for this graph.  

C D

B E

K

I J

H L

F G

A



NP-hard vs. NP-complete

30

Q. If someone finds a polynomial-time algorithm for FACTOR, would that prove that P = NP?  

A. No. (No reduction from an-NP-complete problem is known.)  

Q. If someone finds a polynomial-time algorithm for MIN VERTEX COVER, would that prove that P = NP?  

A. Yes. Such a solution would give a solution to VERTEX COVER, which is NP-complete.

Q. If someone proves that P=NP, would that give a polynomial-time algorithm for MIN VERTEX COVER?  

A. No. (It is “NP-hard” but not known to be in NP.)  

Q. If someone proves that P=NP, would that give a polynomial-time algorithm for MIN VERTEX COVER?  

A. No. (It is “NP-hard” but not known to be in NP.)  

Q. If someone proves that P=NP, would that give a polynomial-time algorithm for FACTOR?  

A. No. It  would prove that one exists, not necessarily exhibit one.



NP-completeness

Exercise 5.5.25
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Which of the following can we infer from the fact that TSP is NP-

complete, if we assume that P ≠ NP?   

a. No algorithm exists that solves arbitrary instances of TSP.  

b. No algorithm exists that efficiently solves arbitrary 
instances of TSP.  

c. There exists an algorithm that efficiently solves arbitrary 

instances of TSP, but no one has been able to find it.  

d. TSP is not in P.  

e. All algorithms that are guaranteed to solve TSP run in 

polynomial time for some family of inputs.  

f. All algorithms that are guaranteed to solve TSP run in 

exponential time for all families of inputs. 

✗ exponential algorithm would do

✓ that’s the point

✗ it would prove P = NP

✓ same as b.

✗ nonsense distractor

✗ could be between poly and exp



NP-completeness

Exercise 5.5.29
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Let A and B be two decision problems. Suppose we know that A 

polynomial-time reduces to B. Which of the following can we infer?  

a. If B is NP-complete then so is A.  

b. If A is NP-complete then so is B.  

c. If B is NP-complete and A is in NP then A is NP-complete.  

d. If A is NP-complete and B is in NP then B is NP-complete.  

e. A and B cannot both be NP-complete.  

f. If A is in P, then B is in P.  

g. If B is in P, then A is in P. 

✗ A might not be in NP

✗ B might not be in NP

✗ wrong way

✓ an implication that matters

✗ why not?

✗ wrong way

✓ an implication that matters



P vs. NP
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Q. Assume that P = NP. Check all correct options.

halting problem TSP SAT FACTOR ILP

is computable ⃝ ⃝ ⃝ ⃝ ⃝

is intractable ⃝ ⃝ ⃝ ⃝ ⃝

is in P ⃝ ⃝ ⃝ ⃝ ⃝

is in NP ⃝ ⃝ ⃝ ⃝ ⃝

is in NPC ⃝ ⃝ ⃝ ⃝ ⃝

✓



P vs. NP
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Q. Assume that P ≠ NP. Check all correct options.

halting 
problem TSP SAT FACTOR ILP

is computable ⃝ ⃝ ⃝ ⃝ ⃝

is intractable ⃝ ⃝ ⃝ ⃝ ⃝

known to be in P ⃝ ⃝ ⃝ ⃝ ⃝

known to be in NP ⃝ ⃝ ⃝ ⃝ ⃝

known to be NPC ⃝ ⃝ ⃝ ⃝ ⃝

✓



Lecture 17: A Computing Machine



36

1970



Binary operations
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Q. Why is ~0 equal to -1 and not 1? (Fall 2014 Q1B)

A (wrong).  
~ is "not" 
0 is "false" 
"not false" is “true" 

"true" is 1

A (correct).  

~ is BITWISE "not" 
 0 is 00000000000000000000000000000000 
~0 is 11111111111111111111111111111111 
  11111111111111111111111111111111 is -1 (2s complement)



Representing numbers
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Q. Fill in the blanks in this table.

unsigned base 10 16-bit binary 4-digit hex

0000000001100100 0064

 4096+256+16+1 = 4369 0001000100010001

12 000C

100

1111

0000000000001100



Representing information
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Q. Fill in the blanks in this table.

hex TOY instruction TOY integer

halt 100

1A00 6,656

FFF0 R[F] = PC + 1; PC = F0

2111 R[1] = R[1] - R[1]

DEEF if (R[E] > 0) PC = EF

0064

R[A] = R[0] + R[0]

−16

8,465

−8,465



TOY blocking and tackling I
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Q. Give seven instructions (all having different opcodes) to put 0000 in R[A].

1A00 R[A] = R[0] + R[0]

2Axx R[A] = R[x] - R[x]

3A0x R[A] = R[0] & R[x]

4Axx R[A] = R[x] ^ R[x]

5A0x R[A] = R[0] << R[0]

6A0x R[A] = R[0] >> R[x]

7A00 R[A] = 0000



TOY blocking and tackling II
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Q. Which of the following put FFFF in R[A]?

7AFF R[A] = 00FF

7B01 
2A0B

R[B] = 0001 

R[A] = R[0] - R[B]

7A01 
2A0A

R[A] = 0001 

R[A] = R[0] - R[A]

7AFF 

7B08 
5AA8 
6AA8 

R[A] = 00FF 

R[B] = 0008 

R[A] = R[A] << R[B] 

R[A] = R[A] >> R[B]

✗

✓

✓

✓



TOY code I
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Q. What does this TOY program do?

10: 82FF R[2] = stdin

11: 7B01 R[B] = 0001

12: 2A0B R[A] = FFFF

13: 432A R[3] = R[2] ^ R[A]

14: 133B R[3] = R[3] + 1

15: 93FF stdout = R[3]

16: 0000 halt



TOY code II
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Q. What does this TOY program do?

10: 8210 R[2] = 8210

11: 7D01 R[D] = 0001

12: 2A0D R[A] = FFFF

13: 432A R[3] = 7DEF

14: 9315 M[15] = R[3]

15: 93FF stdout = R[3]

16: 9DFF stdout = R[D]

17: 0000 halt



Lecture 18: van Neumann Machines



TOY blocking and tackling III
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Q. (F11) Suppose that R[2] contains a small integer x. 
     Match each instruction with a description of 

     the value of R[2] after it is executed.

1000

4222

1222

5222

E022

7022

1202

A. 0

B. 2x

C. x2

D. 2x

E. x2x

F. x − 2

G. x

H. No match

G
A
B
E
G
G
G



TOY code with a loop I
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Q. [S11] Consider this TOY program.

20: 2AAB R[A] = R[A] - R[B]

21: DA20 if (R[A] > 0) PC = 20

22: CA24 if (R[A] == 0) PC = 24

23: 1AAB R[A] = R[A] + R[B]

24: 0000 halt

A. Give the result when R[A] is 001A and R[B] is 0008. 
     R[A]:                    R[B]:  

B. Give the result when R[A] is 5EAB and R[B] is 0010. 
     R[A]:                    R[B]:  

C. Give equivalent Java code.

0002 0008

000B 0010

 a = a % b ;



TOY code with a loop II
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Q. [S2012] What does this TOY program punch?

0F: 000N
10: 840F R[4] = M[0F]

11: 4555 R[5] = 0000

12: 7601 R[6] = 0001

13: 1554 R[5] = R[5] + R[4]

14: 2446 R[4] = R[4] - 1

15: D413 if (R[4] > 0) PC = 13

16: 95FF stdout = R[5]

17: 0000 halt

A. N + (N − 1) + (N − 2)  + . . . + 1 = N(N + 1)/2

Q. Largest value in 0F with no overflow? A. 0100



TOY code with a loop III
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Q. [Ex. 6.3.21] What does this TOY program punch?

10: 7101 R[1] = 0001 D0: 0001

11: 72D0 R[2] = 00D0 D1: 00D6

12: 1421 R[4] = R[2] + R[1] D2: 0005

13: A302 R[3] = M[R[2]] D3: 00D8

14: 93FF stdout = R[3] D4: 0004

15: A204 R[2] = M[R[4]] D5: 00D2

16: D212 if (R[2] > 0) PC = 12 D6: 0002

17: 0000 halt D7: 00DA

D8: 0006

D9: 0000

DA: 0003

DB: 00D4
A. 0001 0002 0003 0004 0005 0006



Key idea I
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Q. Can a TOY do anything that a UTM can (and vice-versa)?

NO

. . . . . .

HALT

YES



Key idea II
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Q. Can a TOY do anything that your computer can (and vice-versa)?



Lecture 19: Combinational Circuits



Boolean logic I

Q. [Ex. 7.1.3]  Give a truth-table proof showing that x + yz = (x + y)(x + z).

52

A.
x y z yz x + yz x + y x + z (x  + y)  (x  + z )

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1



NAND gate

Q. Give a circuit that implements the NAND function.
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NAND

x y

( xy )'

x y NAND

0 0 1

0 1 1

1 0 1

1 1 0

yx
x+y

xy

x y

Hints.

A.

x y

( xy )'



Notation
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NAND

x y

( xy )'Q. Why this? and not this?

A.

x

( xy )'

y

A. Eliminates a layer of abstraction (stay tuned).



Simple circuits I

Q. [Spring 2014]  Label each circuit with the letter corresponding to its output.
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NAND

X 0

output

NAND

NAND

X Y

A. 1

B. 0

C. xy

D. x'y'

E. xy + y'

F. x'

NAND

X 1

output

NAND

X

output

NAND

NAND
output

X Y

NAND
output

A.

F.

F.

E.

A.



Simple circuits II

Q. [Spring 2013]  Label each circuit with the letter corresponding to its output.
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OR NOT

X Y

output

OR

NOT

X

output

NOT

Y

OR

OR
output

NOT

X Y

AND

NOT

X

AND

NOT

Y

OR
output

A. always 1

B. always 0

C. 1 iff X and Y are equal

D. 1 iff X and Y are both 0

E. 1 iff X and Y are not equal

F. 0 iff X and Y are both 1

D.

E.

F.

A.



Boolean logic II

Q. [F 2014]  Give a truth table for EVEN PARITY (number of 1s in inputs is even).
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A.
x y z EVEN PARITY

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0



Combinational circuit

Q. [F 2014]  Which circuit is computing EVEN PARITY  for 1 1 0?

58

✓



Incrementer

Q. [7.3.18]  Draw a circuit that increments a 4-bit number.
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A.

c4 c3 c2 c1 1

x3 x2 x1 x0

z3 z2 z1 z0

xi ci ci+1

0 0 0

0 1 0

1 0 0

1 1 1

carry bit

xi ci zi

0 0 0

0 1 1

1 0 1

1 1 0

sum bit



Incrementer

Q. [7.3.18]  Draw a circuit that increments a 4-bit number.

60

A.

c4 c3 c2 c1 1

x3 x2 x1 x0

z3 z2 z1 z0

xi ci ci+1

0 0 0

0 1 0

1 0 0

1 1 1

carry bit

xi ci zi

0 0 0

0 1 1

1 0 1

1 1 0

sum bit



Lecture 20: CPU



Number representation

Q. (Spring 2013 Q1) Why can 3/2 be represented as an exact double in Java but 1/10 cannot?
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A. No questions on floating point representation in this exam.

A. 3/2 = 1 + 1/2, but no way to represent 1/10 as sum of decreasing powers of 1/2.



Circuit components

Q. (Spring 2012 Q5) How to write the truth table?

63

x y z f

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

A. No, you need to know what they do.

Q. Do we need to memorize what the complex circuits are composed of?

A. Try all possibilities.

MUX

z

y

1
x

x y

A multiplexer switches the 
addressed input value to  
the output (p. 942)



Sequential circuit I

Q. (Ex. 7.4.3) Draw the response of this circuit to the given clock signal.

64

A.

clock

output



Sequential circuit II

Q. (Ex. 7.4.16) Draw the response of this circuit to the given clock signal.
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A.

clock

z0

z1

z2

z3

~z3 ~z2 ~z1 ~z0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0



Matching I

Q. (Fall 2014 Q10)  Identify each of the CPU components as combinational or sequential.

66

combinational sequential

ADDR MUX ⃝ ⃝

ALU ⃝ ⃝

CLOCK ⃝ ⃝

CONTROL ⃝ ⃝

IR ⃝ ⃝

MEMORY ⃝ ⃝

PC ⃝ ⃝

R ⃝ ⃝

R MUX ⃝ ⃝

✓

✓

✓

✓

✓

✓

✓

✓

✓



Matching II

Q. (Fall 2014 Q10, modified)  Match each CPU component to a description.
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ADDR MUX

ALU

CLOCK

CONTROL

IR

MEMORY

PC

R

R MUX

A. holds address of current instruction

B. inputs from IR and PC

C. contents ultimately come from one of three sources

D. decodes instructions

E. selects register inputs

F. big sequential circuit

G. holds current instruction

H. sequential circuit that produces periodic pulses

I. computes boolean function values

B.

I.

H.

D.

G.

F.

A.

C.

E.



Data paths I

Q. (Spring 2015 Q7) Why is A checked as a needed data path for every instruction?

68

OLD NOTATION

A is the path from the 
PC to the MA mux 

Q. How do we study from Lecture 20?

A. Need this path to fetch the instruction.

A. Read Chapter 7.



Data paths

Q. (Spring 2015 Q7) Check all the boxes that correspond to the datapaths needed to fetch and  
                                execute the following TOY-8 instructions.

69

A B C D E

ADD ☐ ☐ ☐ ☐ ☐

LOAD ☐ ☐ ☐ ☐ ☐

STORE ☐ ☐ ☐ ☐ ☐

BRANCH 
ZERO ☐ ☐ ☐ ☐ ☐

✓✓ ✓

✓✓✓ ✓

✓✓ ✓

✓✓ ✓ ✓ ✓



R WRITE

IR WRITE

 PC WRITE 

MEMORY WRITE

 PC INCREMENT

 PC LOAD

ALU ADD

ALU XOR

ALU AND

ADDR MUX IR

ADDR MUX PC

R MUX ALU

R MUX MEM

R MUX IR

CONTROL

PC

MEMORY

R

IR

ALU FETCH

FETCH WRITE
EXECUTE

EXECUTE WRITE 

RUN

HALT

CLOCK

TOY-8 CPU

70

MEMORY

ALU

R

IR

PC

CONTROL

R MUX 
3-way 

addr MUX 
2-way 


