
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/25/16 7:03 AM

6.5 REDUCTIONS

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

‣ intractability

Exercise

Imagine that founding father Alexander Hamilton* has offered to  
find a Hamiltonian cycle in any given graph (if one exists).

Design an efficient algorithm to find a Hamiltonian path in a  
graph (if one exists) by making queries to Hamilton.

Solution. Given graph G = (V, E):

・Query Hamilton with G.

– If cycle found, remove last vertex and return rest.

・For every nonexistent edge e ∉ E:

– Query Hamilton with (V, E U {e})
– If cycle found, “rotate” it so that final two vertices are incident on e;

remove final vertex and return the rest.

・Return “no Hamiltonian path”.

*Hamiltonian cycle/path are named after William Rowan Hamilton.

2

The cycle must traverse e. Why?

Why is this correct?

Reductions: overview

Main topics.

・Reduction: relationship between two problems.

・Algorithm design: paradigms for solving problems.

 
Shifting gears.

・From individual problems to problem-solving models.

・From linear/quadratic to polynomial/exponential scale.

・From implementation details to conceptual frameworks.

 
Goals.

・Place algorithms and techniques we've studied in a larger context.

・Introduce you to important and essential ideas.

・Inspire you to learn more about algorithms!

3

Reductions: practical tip

Reductions require ingenuity, but a few tricks recur. Practice them.

4

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

‣ intractability

6.5 REDUCTIONS

6

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that  
solves Y to help solve X.

 
 
 
 
 
 
 
 
Cost of solving X = total cost of solving Y + cost of reduction.

perhaps many calls to Y 
on problems of different sizes

(typically only 1 call)

preprocessing and postprocessing
(typically less than cost of solving Y)

 
instance I 

(of X)
solution to I

Algorithm 
for Y

Algorithm for X

7

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that  
solves Y to help solve X.

 
 
 
 
 
 

 
Ex 1. [finding the median reduces to sorting]

To find the median of N items:

・Sort the N items.

・Return item in the middle.

 
Cost of finding the median. N log N + 1 .

cost of sorting

cost of reduction

 
instance I 

(of X)
solution to I

Algorithm 
for Y

Algorithm for X

8

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that  
solves Y to help solve X.

 
 
 
 
 
 
 
Ex 2. [element distinctness reduces to sorting]

To solve element distinctness on N items:

・Sort the N items.

・Check adjacent pairs for equality.

 
Cost of element distinctness. N log N + N .

cost of sorting
cost of reduction

 
instance I 

(of X)
solution to I

Algorithm 
for Y

Algorithm for X

9

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that  
solves Y to help solve X.

 
 
 
 
 
 
 
Novice error. Confusing X reduces to Y with Y reduces to X.

 
instance I 

(of X)
solution to I

Algorithm 
for Y

Algorithm for X

Confusing terminology. CS professors often slip up.

Which of the following reductions have we encountered in this course?

 I. MAX-FLOW reduces to MIN-CUT.

 II. MIN-CUT reduces to MAX-FLOW.

A. I only.

B. II only.

C. Both I and II.

D. Neither I nor II.

E. I don't know.

10

Reductions: quiz 1

need to find max st-flow and min st-cut
(not simply compute the value)

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

‣ intractability

6.5 REDUCTIONS

12

Reduction: design algorithms

Def. Problem X reduces to problem Y if you can use an algorithm that  
solves Y to help solve X.

Design algorithm. Given an algorithm for Y, can also solve X.

 
More familiar reductions.

・Mincut reduces to maxflow.

・Arbitrage reduces to negative cycles.

・Bipartite matching reduces to maxflow.

・Seam carving reduces to shortest paths in a DAG.

・Burrows-Wheeler transform reduces to suffix sort. 
…

 
 
Reasoning. Since I know how to solve Y, can I use that algorithm to solve X ?

programmer’s version: I have code for Y. Can I use it for X?

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points 
of the convex hull (in counterclockwise order).

Proposition. Convex hull reduces to sorting.

Pf. Graham scan algorithm.

Cost of convex hull. N log N + N.
13

Convex hull reduces to sorting

convex hull sorting

1251432
2861534
3988818
8111033
13546464
89885444
43434213
34435312

cost of reduction
cost of sorting

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

Graham scan demo

p

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

Graham scan demo

1

0

4

5

67

8

10

1112

2

3
9

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

1

0

3

4

5

67

8

10

1112

2

Graham scan demo

9

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

1

0

4

5

67

8

10

1112

2

Graham scan demo

3
9

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

1

0

4

5

67

8

10

1112

2

Graham scan demo

3

9

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

Graham scan demo

1

0

3

4

5

2

67

8

10

1112

9

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

5

Graham scan demo

67

8

10

1112

9

1

0

4 2

3

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

1

0

4

5

Graham scan demo

2

67

8

10

1112

9

3

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

1

0

4

5

2

Graham scan demo

67

8

10

1112

9

3

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

1

0

4

5

2

Graham scan demo

67

8

10

1112

9

3

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

5

67

Graham scan demo

1

0

2

8

10

1112

9

3

4

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

5

67

Graham scan demo

8

10

1112

9

1

0

2

3

4

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

5

7

Graham scan demo

8

10

1112

9

1

0

2

3

4

6

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

1

0

5

7

8

10

1112

2

Graham scan demo

9

3

4

6

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

5

7

8

Graham scan demo

1

2

0

10

1112

9

3

4

6

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

5

8

Graham scan demo

10

1112

1

0

2

9

3

4

67

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

Graham scan demo

10

1112

1

0

5

2

9

3

4

67

8

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

10

Graham scan demo

1112

1

0

5

2

9

3

4

67

8

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

10

11

Graham scan demo

12

1

0

5

2

9

3

4

67

8

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

1

0

5

10

11
12

2

Graham scan demo

9

3

4

67

8

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

10

11

Graham scan demo

12

1

0

5

6

8

2

9

3

4

7

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

Graham scan demo

12

1

0

5

9

10

11

6

2

3

4

7

8

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard those that create clockwise turn.

10

11
12

Graham scan demo

1

0

5

67

2

3

9

4

8

Some reductions in combinatorial optimization

37

directed shortest paths  
(nonnegative)

undirected shortest paths  
(nonnegative)

arbitrage

directed shortest paths
(no neg cycles)

shortest paths  
(in a DAG)

seam
carving

linear 
programming

assignment
problem

bipartite
matching

baseball
elimination

 maxflow

mincut

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

‣ intractability

6.5 REDUCTIONS

39

Bird's-eye view

Goal. Prove that a problem requires a certain number of steps.

Ex. In decision tree model, any compare-based sorting algorithm  
requires Ω(N log N) compares in the worst case.

 
 
 
 
 
 
 
 
 
 
Bad news. Very difficult to establish lower bounds from scratch.

Good news. Spread Ω(N log N) lower bound to Y by reducing sorting to Y.

assuming cost of reduction is not too high

argument must apply to all
conceivable algorithms

b < c

yes no

a < c

yes

a < c

yes no

a c b c a b

b a ca b c b < c

yes no

b c a c b a

a < b

yes no

no

40

Linear-time reductions

Def. Problem X linear-time reduces to problem Y if X can be solved with:

・Linear number of standard computational steps.

・Constant number of calls to Y.

 
Establish lower bound:

・If X takes Ω(N log N) steps, then so does Y.

・If X takes Ω(N 2) steps, then so does Y.

・Intuition: X = known problem; Y = new problem.

 
Reasoning.

・If I could easily solve Y, then I could easily solve X.

・I can’t easily solve X.

・Therefore, I can't easily solve Y.

Which of the following reductions is not a linear-time reduction?

A. ELEMENT-DISTINCTNESS reduces to SORTING.

B. MIN-CUT reduces to MAX-FLOW.

C. HAMILTONIAN-PATH reduces to HAMILTONIAN-CYCLE.

D. BURROWS-WHEELER-TRANSFORM reduces to SUFFIX-SORTING.

E. I don't know.

41

Reductions: quiz 2

not the one we saw earlier,
anyway

Exercise: linear-time reduction

Imagine that founding father Alexander Hamilton has offered to  
find a Hamiltonian cycle in any given graph (if one exists).

Design an efficient algorithm to find a Hamiltonian path in a  
graph (if one exists) by making queries to Hamilton. The Treasury

Secretary’s time is valuable, so you must minimize the number of queries.

42

Exercise: linear-time reduction

Imagine that founding father Alexander Hamilton has offered to  
find a Hamiltonian cycle in any given graph (if one exists).

Design an efficient algorithm to find a Hamiltonian path in a  
graph (if one exists) by making queries to Hamilton. The Treasury

Secretary’s time is valuable, so you must minimize the number of queries.

Solution. Given graph G = (V, E):

・Add a virtual vertex v and connect it to all vertices.

・Query Hamilton with the resulting graph:

43

Exercise: linear-time reduction

Imagine that founding father Alexander Hamilton has offered to  
find a Hamiltonian cycle in any given graph (if one exists).

Design an efficient algorithm to find a Hamiltonian path in a  
graph (if one exists) by making queries to Hamilton. The Treasury

Secretary’s time is valuable, so you must minimize the number of queries.

Solution. Given graph G = (V, E):

・Add a virtual vertex v and connect it to all vertices.

・Query Hamilton with the resulting graph:

– If cycle found, rotate so that v is first/last vertex;  
remove v and return the rest.

– Else return “no Hamiltonian path”.

44

Why is this correct?

45

Lower bound for convex hull

 
 
Proposition. Sorting linear-time reduces to convex hull. 
Pf. [see next slide]

 
 
 
 
 
 
 
 
 
Implication. Any convex hull algorithm requires Ω(N log N) ops.

lower-bound reasoning:
I can't sort in linear time, 

so I can't solve convex hull
in linear time either

sorting

1251432
2861534
3988818
4190745
8111033
13546464
89885444
43434213
34435312

convex hull

Proposition. Sorting linear-time reduces to convex hull.

・Sorting instance: x1, x2, ... , xN.

・Convex hull instance: (x1 , x12), (x2, x22), ... , (xN , xN2).
 
 
 
 
 
 
 
 
 
Pf.

・Region { (x, y) : y ≥ x2 } is convex ⇒ all N points are on hull.

・Starting at point with most negative x, counterclockwise order of hull

points yields integers in ascending order.
46

Sorting linear-time reduces to convex hull

f (x) = x2

(xi , xi2)

x

y

Any convex fn.
will do.

Establishing lower bounds through reduction is an important tool 
in guiding algorithm design efforts.

 
Q. How to convince yourself no linear-time CONVEX-HULL algorithm exists?

A1. [hard way] Long futile search for a linear-time algorithm.

A2. [easy way] Linear-time reduction from sorting.

Establishing lower bounds: summary

47

Our lower bound proof strategy for CONVEX-HULL would work even if:

A. Our reduction invoked CONVEX-HULL Θ(log N) times instead of once.

B. Our pre-/post-processing was linearithmic instead of linear.

C. Both A. and B.

D. Neither A. nor B.

E. I don't know.

48

Reductions: quiz 3

Cost of solving SORTING = total cost of CONVEX-HULL + cost of reduction.

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

‣ intractability

6.5 REDUCTIONS

50

Bird's-eye view

Desiderata. Classify problems according to computational requirements.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Frustrating news. Huge number of problems have defied classification.

complexity order of growth examples

linear N min, max, median,  
Burrows-Wheeler transform, ...

linearithmic N log N sorting, element distinctness,  
closest pair, Euclidean MST, ...

quadratic N 2 ?

⋮ ⋮ ⋮

exponential c N ?

51

Bird's-eye view

Desiderata. Classify problems according to computational requirements.

 
Desiderata'. Suppose we could (could not) solve problem X efficiently.  
What else could (could not) we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to
 place it, and I shall move the world. ” — Archimedes

Desiderata. Problem with algorithm that matches lower bound.

Ex. Sorting and element distinctness have complexity N log N.

 
 
Desiderata'. Prove that two problems X and Y have the same complexity.

・First, show that problem X linear-time reduces to Y.

・Second, show that Y linear-time reduces to X.

・Conclude that X has complexity T(N) iff Y has complexity T(N).

Classifying problems: summary

52

even if we don't know what it is

X = sorting

Y = element
distinctness

integer
multiplication

integer
division

53

Integer arithmetic reductions

Integer multiplication. Given two N-bit integers, compute their product.

Brute force. N 2 bit operations.

1 1 0 1 0 1 0 1

× 0 1 1 1 1 1 0 1

1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1

54

Integer arithmetic reductions

Integer multiplication. Given two N-bit integers, compute their product.

Brute force. N 2 bit operations.

 
 
 
 
 
 
 
 
 
 
 
 
 
Q. Is brute-force algorithm optimal?

problem arithmetic order of growth

integer multiplication a × b M(N)

integer division a / b, a mod b M(N)

integer square a 2 M(N)

integer square root ⎣√a ⎦ M(N)

integer arithmetic problems with the same complexity as integer multiplication

55

History of complexity of integer multiplication

Remark. GNU Multiple Precision Library uses one of five

different algorithm depending on size of operands.

year algorithm order of growth

? brute force N 2

1962 Karatsuba N 1.585

1963 Toom-3, Toom-4 N 1.465 , N 1.404

1966 Toom-Cook N 1 + ε

1971 Schönhage–Strassen N log N log log N

2007 Fürer N log N 2 log*N

? ? N

number of bit operations to multiply two N-bit integers

used in Maple, Mathematica, gcc, cryptography, ...

3-SUM. Given N distinct integers, are there three that sum to 0 ?
 
3-COLLINEAR. Given N distinct points in the plane, are there 3 (or more)

that lie on the same line?

3-collinear

56

Lower bound for 3-COLLINEAR

3-sum

590584
-23439854
1251432

-2861534
3988818

-4190745
333255

13546464
89885444
-43434213
11998833

57

Lower bound for 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 0 ?
 
3-COLLINEAR. Given N distinct points in the plane, are there 3 (or more)  
that lie on the same line?

 
 
 
Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

Pf. [next two slides]

 
 
 
Conjecture. No sub-quadratic algorithm for 3-SUM.

Implication. No sub-quadratic algorithm for 3-COLLINEAR likely.

our N2 log N algorithm was pretty good

lower-bound reasoning:
if I can't solve 3-SUM in N1.99 time, 

I can't solve 3-COLLINEAR
in N1.99 time either

58

3-SUM linear-time reduces to 3-COLLINEAR

Reduction. 3-SUM linear-time reduces to 3-COLLINEAR.

・3-SUM instance: x1, x2, ... , xN .

・3-COLLINEAR instance: (x1 , f(x1)), (x2, f(x2)), ... , (xN , f(xN)).

We hope to prove: If a, b, and c are distinct, then a + b + c = 0 
if and only if (a1 , f(a1)), (b2, f(b2)), ... , (cN , f(cN)) are collinear.

(1, 1)

(2, 8)

(-3, -27) -3 + 2 + 1 = 0

f (x) = x3

59

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

・3-SUM instance: x1, x2, ... , xN .

・3-COLLINEAR instance: (x1 , x13), (x2, x23), ... , (xN , xN3).

Lemma. If a, b, and c are distinct, then a + b + c = 0 
if and only if (a, a3), (b, b3), and (c, c3) are collinear.

Pf. Three distinct points (a, a3), (b, b3), (c, c3) are collinear iff:

0 =

������

a a3 1
b b3 1
c c3 1

������

= a(b3 � c3)� b(a3 � c3) + c(a3 � b3)

= (a� b)(b� c)(c� a)(a + b + c)

(1, 1)

(2, 8)

(-3, -27) -3 + 2 + 1 = 0

f (x) = x3

Some recent (2014) evidence that the complexity might be N 3 / 2.

60

Complexity of 3-SUM

ar
X

iv
:1

40
4.

07
99

v1
 [

cs
.D

S]
 3

 A
pr

 2
01

4

Threesomes, Degenerates, and Love Triangles˚

Allan Grønlund
MADALGO, Aarhus University

Seth Pettie
University of Michigan

April 4, 2014

Abstract

The 3SUM problem is to decide, given a set of n real numbers, whether any three sum to zero.
We prove that the decision tree complexity of 3SUM is Opn3{2

?
lognq, that there is a randomized

3SUM algorithm running in Opn2plog lognq2{ lognq time, and a deterministic algorithm running
in Opn2plog lognq5{3{plognq2{3q time. These results refute the strongest version of the 3SUM
conjecture, namely that its decision tree (and algorithmic) complexity is Ωpn2q.

Our results lead directly to improved algorithms for k-variate linear degeneracy testing for all
odd k ě 3. The problem is to decide, given a linear function fpx1, . . . , xkq “ α0 `

ř

1ďiďk
αixi

and a set S Ă R, whether 0 P fpSkq. We show the decision tree complexity is Opnk{2
?
lognq

and give algorithms running in time Opnpk`1q{2{ polyplognqq.
Finally, we give a subcubic algorithm for a generalization of the pmin,`q-product over real-

valued matrices and apply it to the problem of finding zero-weight triangles in weighted graphs.
A depth-Opn5{2

?
lognq decision tree is given for this problem, as well as an algorithm running

in time Opn3plog lognq2{ lognq.

1 Introduction

The time hierarchy theorem [16] implies that there exist problems in P with complexity Ωpnkq
for every fixed k. However, it is consistent with current knowledge that all problems of practical
interest can be solved in Õpnq time in a reasonable model of computation. Efforts to build a useful
complexity theory inside P have been based on the conjectured hardness of certain archetypal
problems, such as 3SUM, pmin,`q-matrix product, and CNF-SAT. See, for example, the conditional
lower bounds in [15, 19, 20, 17, 1, 2, 21, 10, 23].

In this paper we study the complexity of 3SUM and related problems such as linear degeneracy
testing (LDT) and finding zero-weight triangles. Let us define the problems formally.

3SUM: Given a set S Ă R, determine if there exists a, b, c P S such that a ` b ` c “ 0.

Integer3SUM: Given a set S Ď t´U, . . . , Uu Ă Z, determine if there exists a, b, c P S such that
a ` b ` c “ 0.

˚This work is supported in part by the Danish National Research Foundation grant DNRF84 through the Center
for Massive Data Algorithmics (MADALGO). S. Pettie is supported by NSF grants CCF-1217338 and CNS-1318294
and a grant from the US-Israel Binational Science Foundation.

1

Reductions: summary

Reduction: relationship between two problems.

How to apply:

・Reduction to solved problem: paradigm for designing algorithms.

・Reduction from solved problem: technique for proving lower bounds.

・Putting the two together: classify problems into complexity classes.

– Especially useful for proving NP-completeness.

Reductions require ingenuity, but a few tricks recur.

61

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

‣ intractability (next lecture)

6.5 REDUCTIONS

63

Bird's-eye view

Def. A problem is intractable if it can't be solved in polynomial time.

Desiderata. Prove that a problem is intractable.

 
 
Two problems that provably require exponential time.

・Given a constant-size program, does it halt in at most K steps?

・Given N-by-N checkers board position, can the first player force a win?

 
 
 
 
 
 
 
 
Frustrating news. Very few successes.

input size = c + lg K

using forced capture rule

64

A core problem: satisfiability

SAT. Given a system of boolean equations, find a solution. 
 
Ex.

 
 
 
 
 
 
3-SAT. All equations of this form (with three variables per equation).

 
Key applications.

・Automatic verification systems for software.

・Mean field diluted spin glass model in physics.

・Electronic design automation (EDA) for hardware.

・... 

¬ x1 or x2 or x3 = true

x1 or ¬ x2 or x3 = true

¬ x1 or ¬ x2 or ¬ x3 = true

¬ x1 or ¬ x2 or or x4 = true

¬ x2 or x3 or x4 = true
x1 x2 x3 x4

T T F T

instance I solution S

Satisfiability is conjectured to be intractable

Q. How to solve an instance of 3-SAT with N variables?

A. Exhaustive search: try all 2N truth assignments.

 
 
 
 
 
 
 
 
 
 
Q. Can we do anything substantially more clever? 

Conjecture (P ≠ NP). 3-SAT is intractable (no poly-time algorithm).

65

consensus opinion

66

Polynomial-time reductions

Problem X poly-time (Cook) reduces to problem Y if X can be solved with:

・Polynomial number of standard computational steps.

・Polynomial number of calls to Y.

 
 
 
 
 
 
Establish intractability. If 3-SAT poly-time reduces to Y, then Y is intractable.  
(assuming 3-SAT is intractable)

 
Reasoning.

・If I could solve Y in poly-time, then I could also solve 3-SAT in poly-time.

・3-SAT is believed to be intractable.

・Therefore, so is Y.

 
instance I 

(of X)
solution to I

Algorithm 
for Y

Algorithm for X

ILP. Given a system of linear inequalities, find an integral solution.

 
 
 
 
 
 
 
 
 
 
 
 
 
Context. Cornerstone problem in operations research.

Remark. Finding a real-valued solution is tractable (linear programming).
67

Integer linear programming

3x1 + 5x2 + 2x3 + x4 + 4x5 ≥ 10

5x1 + 2x2 + 4x4 + 1x5 ≤ 7

x1 + x3 + 2x4 ≤ 2

3x1 + 4x3 + 7x4 ≤ 7

 x1 + x4 ≤ 1

 x1 + x3 + x5 ≤ 1

all xi = { 0 , 1 }

linear inequalities

integer variables x1 x2 x3 x4 x5

0 1 0 1 1

solution Sinstance I

3-SAT. Given a system of boolean equations, find a solution.

 
 
 
 
 
 
 
ILP. Given a system of linear inequalities, find a 0-1 solution.

68

3-SAT poly-time reduces to ILP

¬ x1 or x2 or x3 = true

x1 or ¬ x2 or x3 = true

¬ x1 or ¬ x2 or ¬ x3 = true

¬ x1 or ¬ x2 or or x4 = true

¬ x2 or x3 or x4 = true

solution to this ILP instance gives solution to original 3-SAT instance

(1 – x1) + x2 + x3 ≥ 1

x1 + (1 – x2) + x3 ≥ 1

(1 – x1) + (1 – x2) + (1 – x3) ≥ 1

(1 – x1) + (1 – x2) + + x4 ≥ 1

(1 – x2) + x3 + x4 ≥ 1

Suppose that Problem X poly-time reduces to Problem Y. Which of the

following can you infer?

A. If X can be solved in poly-time, then so can Y.

B. If X cannot be solved in cubic time, Y cannot be solved in poly-time.

C. If Y can be solved in cubic time, then X can be solved in poly-time.

D. If Y cannot be solved in poly-time, then neither can X.

E. I don't know.

69

Reductions: quiz 3

70

More poly-time reductions from 3-satisfiability

3-SAT

VERTEX-COVER

HAM-CYCLECLIQUEILP

3-COLOR

EXACT-COVER

SUBSET-SUM

PARTITION

KNAPSACK

Dick Karp 
'85 Turing award

3
-SA

T red
uces to ILP

TSP

BIN-PACKING

Conjecture. 3-SAT is intractable.
Implication. All of these problems are intractable.

HAM-PATH

Implications of poly-time reductions from 3-satisfiability

Establishing intractability through poly-time reduction is an important tool  
in guiding algorithm design efforts.

 
Q. How to convince yourself that a new problem is (probably) intractable?

A1. [hard way] Long futile search for an efficient algorithm (as for 3-SAT).

A2. [easy way] Reduction from 3-SAT.

 
 
Caveat. Intricate reductions are common.

71

72

Search problems

Search problem. Problem where you can check a solution in poly-time.

 
Ex 1. 3-SAT.

 
 
 
 
 
 
 
 
Ex 2. FACTOR. Given an N-bit integer x, find a nontrivial factor.  

147573952589676412927 193707721

instance I solution S

x1 x2 x3 x4

T T F T

¬ x1 or x2 or x3 = true
x1 or ¬ x2 or x3 = true

¬ x1 or ¬ x2 or ¬ x3 = true
¬ x1 or ¬ x2 or or x4 = true

¬ x2 or x3 or x4 = true
instance I solution S

73

P vs. NP

P. Set of search problems solvable in poly-time.  
Importance. What scientists and engineers can compute feasibly.

 
NP. Set of search problems (checkable in poly-time). 
Importance. What scientists and engineers aspire to compute feasibly.

 
Fundamental question.

 
 
 
 
 
 
 
 
Consensus opinion. No.

74

Cook-Levin theorem

A problem is NP-COMPLETE if

・It is in NP.

・All problems in NP poly-time to reduce to it.

 
Cook-Levin theorem. 3-SAT is NP-COMPLETE.

Corollary. 3-SAT is tractable if and only if P = NP.

 
 
Two worlds.

NP

P NPC

P ≠ NP

P = NP

P = NP

75

Implications of Cook-Levin theorem

3-SAT

IND-SET VERTEX-COVER

HAM-CYCLECLIQUE

3-COLOR

EXACT-COVER

HAM-PATHSUBSET-SUM

PARTITION

ILP

KNAPSACK

TSP

BIN-PACKING

3-COLOR reduces to 3-SAT

All of these problems (and many, many more)
poly-time reduce to 3-SAT.

Stephen Cook 
'82 Turing award

Leonid Levin

76

Implications of Karp + Cook-Levin

3-SAT

VERTEX-COVER

CLIQUE

3-COLOR

EXACT-COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

3-SAT reduces to 3-COLOR

TSP

BIN-PACKING

3-COLOR reduces to 3-SAT

All of these problems are NP-COMPLETE; they are

manifestations of the same really hard problem.

IND-SET

ILP

HAM-CYCLE

+

Suppose that X is NP-COMPLETE, Y is in NP, and X poly-time reduces to Y.

Which of the following statements can you infer?

 I. Y is NP-COMPLETE.

 II. If Y cannot be solved in poly-time, then P ≠ NP.

 III. If P ≠ NP, then neither X nor Y can be solved in poly-time.

A. I only.

B. II only.

C. I and II only.

D. I, II, and III.

E. I don't know.

77

Reductions: quiz 4

78

Birds-eye view: review

Desiderata. Classify problems according to computational requirements.

Frustrating news. Huge number of problems have defied classification.

complexity order of growth examples

linear N
min, max, median,  

Burrows-Wheeler transform, ...  

linearithmic N log N sorting, element distinctness, ...  

quadratic N 2 ?

⋮ ⋮ ⋮

exponential c N ?

Desiderata. Classify problems according to computational requirements.

Good news. Can put many problems into equivalence classes.

complexity order of growth examples

linear N
min, max, median,  

Burrows-Wheeler transform, ...  

linearithmic N log N sorting, element distinctness, ...  

M(N) ? integer multiplication,  
division, square root, ...

MM(N) ? matrix multiplication, Ax = b,  
least square, determinant, ...

⋮ ⋮ ⋮

NP-complete probably not N b 3-SAT, IND-SET, ILP, ...

79

Birds-eye view: revised

80

Complexity zoo

Complexity class. Set of problems sharing some computational property.

Bad news. Lots of complexity classes (496 animals in zoo).

Text

https://complexityzoo.uwaterloo.ca

81

Summary

Reductions are important in theory to:

・Design algorithms.

・Establish lower bounds.

・Classify problems according to their computational requirements.

 
Reductions are important in practice to:

・Design algorithms.

・Design reusable software modules.

– stacks, queues, priority queues, symbol tables, sets, graphs

– sorting, regular expressions, suffix arrays

– MST, shortest paths, maxflow, linear programming

・Determine difficulty of your problem and choose the right tool.

