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Data compression

Compression reduces the size of a file: 

・To save space when storing it. 

・To save time when transmitting it. 

・Most files have lots of redundancy.

“ Everyday, we create 2.5 quintillion bytes of data—so much that

   90% of the data in the world today has been created in the last

   two years alone.  ”    — IBM report on big data (2011)



Generic file compression (always lossless). 

・Files:  GZIP, BZIP, 7z. 

・Archivers:  PKZIP. 

・File systems:  NTFS, ZFS, HFS+, ReFS, GFS. 

 
Multimedia (usually lossy). 

・Images:  GIF, JPEG.  

・Sound:  MP3. 

・Video:  MPEG, DivX™, HDTV. 

Communication. 

・ITU-T T4 Group 3 Fax. 

・V.42bis modem. 

・Skype, Google hangout. 

Databases.  Google, Facebook, NSA, ....
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Applications



Message.  Bitstream B we want to compress. 
Compress.  Generates a "compressed" representation C (B). 
Expand.  Reconstructs original bitstream B. 

 
 
 
 
 
 
 
 
 
Compression ratio.  Bits in C (B)  /  bits in B. 
Ex.  50–75% or better compression ratio for natural language.
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Lossless compression and expansion

uses fewer bits 
(you hope)

Basic model for data compression

Compress Expand
bitstream B

0110110101...

original bitstream B

0110110101...

compressed version C(B)

1101011111...
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Compression before computers

Data compression has been omnipresent since antiquity: 

・Number systems.  

・Natural languages.  

・Mathematical notation. 

 
It played a central role in communications technology: 

・Grade 2 Braille. 

・Morse code. 

・Telephone system. 

1X

n=1

1
n2

=
⇡2
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b r a i l l e

but rather like like everya I



Genome.  String over the alphabet { A, T, C, G }. 
 
Goal.  Encode an N-character genome:  A T A G A T G C A T A G . . .  

 
Standard ASCII encoding. 

・8 bits per char. 

・8 N bits. 

 
 
 
 
 
 
 
Fixed-length code.  k-bit code supports alphabet of size 2k.  

 
 
 
 
Two-bit encoding. 

・2 bits per char. 

・2 N bits (25% compression ratio).
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Data representation: genomic code

char hex binary

'A' 41 01000001

'T' 54 01010100

'C' 43 01000011

'G' 47 01000111

char binary

'A' 00

'T' 01

'C' 10

'G' 11



Binary standard input.   Read bits from standard input. 

 
 
 
 
 
 
 
 
Binary standard output.   Write bits to standard output
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Reading and writing binary data

664 CHAPTER 6 n Strings

Binary input and output. Most systems nowadays, including Java, base their I/O on 
8-bit bytestreams, so we might decide to read and write bytestreams to match I/O for-
mats with the internal representations of primitive types, encoding an 8-bit char with 
1 byte, a 16-bit short with 2 bytes, a 32-bit int with 4 bytes, and so forth. Since bit-
streams are the primary abstraction for data compression, we go a bit further to allow 
clients to read and write individual bits, intermixed with data of various types (primi-
tive types and String). The goal is to minimize the necessity for type conversion in 
client programs and also to take care of operating-system conventions for representing 
data.We use the following API for reading a bitstream from standard input:  

public class BinaryStdIn

boolean readBoolean() read 1 bit of data and return as a boolean value
char readChar() read 8 bits of data and return as a char value

char readChar(int r) read r bits of data and return as a char value

[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

boolean isEmpty() is the bitstream empty?

void close() close the bitstream

API for static methods that read from a bitstream on standard input

A key feature of the abstraction is that, in marked constrast to StdIn, the data on stan-
dard input is not necessarily aligned on byte boundaries. If the input stream is a single 
byte, a client could read it 1 bit at a time with 8 calls to readBoolean(). The  close() 
method is not essential, but, for clean termination, clients should call close() to in-
dicate that no more bits are to be read. As with StdIn/StdOut, we use the following 
complementary API for writing bitstreams to standard output: 

public class BinaryStdOut

void write(boolean b) write the specified bit
void write(char c) write the specified 8-bit char

void write(char c, int r) write the r least significant bits of the specified char
[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

void close() close the bitstream

API for static methods that write to a bitstream on standard output
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Date representation.  Three different ways to represent 12/31/1999.

Four ways to put a date onto standard output

110011111011111001111000

A 4-bit field, a 5-bit field, and a 12-bit field (BinaryStdOut)

BinaryStdOut.write(month, 4);
BinaryStdOut.write(day, 5);
BinaryStdOut.write(year, 12);

Two chars and a short (BinaryStdOut)

BinaryStdOut.write((char) month);
BinaryStdOut.write((char) day);
BinaryStdOut.write((short) year);

000000000000000000000000000011000000000000000000000000000001111100000000000000000000011111001111

Three ints (BinaryStdOut)

BinaryStdOut.write(month);
BinaryStdOut.write(day);
BinaryStdOut.write(year);

A character stream (StdOut)

StdOut.print(month + "/" + day + "/" + year);

00001100000111110000011111001111

12 31 1999

00110001001100100010111100110111001100010010111100110001001110010011100100111001

1 2 / 3 1 / 1 9 9 9

12 31 1999 12 31 1999

80 bits

32 bits 21 bits ( + 3 bits for byte alignment at close)

96 bits

Four ways to put a date onto standard output

110011111011111001111000

A 4-bit field, a 5-bit field, and a 12-bit field (BinaryStdOut)

BinaryStdOut.write(month, 4);
BinaryStdOut.write(day, 5);
BinaryStdOut.write(year, 12);

Two chars and a short (BinaryStdOut)

BinaryStdOut.write((char) month);
BinaryStdOut.write((char) day);
BinaryStdOut.write((short) year);

000000000000000000000000000011000000000000000000000000000001111100000000000000000000011111001111

Three ints (BinaryStdOut)

BinaryStdOut.write(month);
BinaryStdOut.write(day);
BinaryStdOut.write(year);

A character stream (StdOut)

StdOut.print(month + "/" + day + "/" + year);

00001100000111110000011111001111
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Writing binary data

Four ways to put a date onto standard output

110011111011111001111000

A 4-bit field, a 5-bit field, and a 12-bit field (BinaryStdOut)

BinaryStdOut.write(month, 4);
BinaryStdOut.write(day, 5);
BinaryStdOut.write(year, 12);

Two chars and a short (BinaryStdOut)

BinaryStdOut.write((char) month);
BinaryStdOut.write((char) day);
BinaryStdOut.write((short) year);

000000000000000000000000000011000000000000000000000000000001111100000000000000000000011111001111

Three ints (BinaryStdOut)

BinaryStdOut.write(month);
BinaryStdOut.write(day);
BinaryStdOut.write(year);

A character stream (StdOut)

StdOut.print(month + "/" + day + "/" + year);

00001100000111110000011111001111

12 31 1999

00110001001100100010111100110111001100010010111100110001001110010011100100111001

1 2 / 3 1 / 1 9 9 9

12 31 1999 12 31 1999

80 bits

32 bits 21 bits ( + 3 bits for byte alignment at close)

96 bits



Q.  How to examine the contents of a bitstream?

10

Binary dumps

628 CHAPTER 5 � Strings

to open a file with an edi-
tor or view it in the manner 
you view text files (or just 
run a program that uses 
BinaryStdOut), you are 
likely to see gibberish, de-
pending on the system you 
use. BinaryStdIn allows 
us to avoid such system de-
pendencies by writing our 
own programs to convert 
bitstreams such that we can 
see them with our standard 
tools. For example, the pro-
gram BinaryDump at left is 
a BinaryStdIn client that 
prints out the bits from 

standard input, encoded with the characters 0 and 1. This program is useful for debug-
ging when working with small inputs. We use a slightly more complicated version that 
just prints the count when the width argument is 0 (see Exercise 5.5.X). The similar 
client HexDump groups the data into 8-bit bytes and prints each as two hexadecimal 
digits that each represent 4 bits. The client PictureDump displays the bits in a Picture. 
You can download HexDump and PictureDump from the booksite. Typically, we use pip-
ing and redirection at the command-line level when working with binary files: we can 
pipe the output of an encoder to BinaryDump, HexDump, or PictureDump, or redirect 
it to a file. 

public class BinaryDump 
{ 
   public static void bits(String[] args) 
   { 
      int width = Integer.parseInt(args[0]); 
      int cnt; 
      for (cnt = 0; !BinaryStdIn.isEmpty(); cnt++) 
      { 
         if (cnt % width == 0) StdOut.println(); 
         if (BinaryStdIn.readBoolean()) 
              StdOut.print("1"); 
         else StdOut.print("0"); 
      } 
      StdOut.println(cnt + " bits"); 
   } 
}

Printing a bitstream on standard (character) output

Four ways to look at a bitstream

Standard character stream

Bitstream represented as 0 and 1 characters

Bitstream represented with hex digits

Bitstream represented as pixels in a Picture

16-by-6 pixel
window, magnified

% more abra.txt
ABRACADABRA!

% java PictureDump 16 6 < abra.txt

96 bits

% java BinaryDump 16 < abra.txt
0100000101000010
0101001001000001
0100001101000001
0100010001000001
0100001001010010
0100000100100001
96 bits

%  java HexDump 4 < abra.txt
41 42 52 41
43 41 44 41
42 52 41 21
12 bytes

6676.5 n Data Compression

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.  
Given a 2-digit hex number, use the first hex 
digit as a row index and the second hex digit 
as a column reference to find the character 
that it encodes. For example, 31 encodes the 
digit 1, 4A encodes the letter J, and so forth. 
This table is for 7-bit ASCII, so the first hex 
digit must be 7 or less. Hex numbers starting 
with 0 and 1 (and the numbers 20 and 7F) 
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices 
like typewriters were controlled by ASCII input; the table highlights a few that you 
might see in dumps. For example SP is the space character, NUL is the null character, LF 
is line-feed, and CR is carriage-return. 

In summary, working with data compression requires us to reorient our thinking about 
standard input and standard output to include binary encoding of data. BinaryStdIn 
and BinaryStdOut provide the methods that we need. They provide a way for you to 
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans). 

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! “ # $ % & ‘ ( ) * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [ \ ] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal to ASCII conversion table
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Which of these formats are text-based, and which are binary?

HTML 

GIF 

MPEG 

PDF 

SVG 

Java source code 

Java bytecode
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Universal data compression

ZeoSync.  Announced 100:1 lossless compression of random data using 

Zero Space Tuner™ and BinaryAccelerator™ technology.

ZeoSync corporation folds after issuing $40 million in private stock



Quotes from this interview

Wired News: When did you start working on this technology? 

Peter St. George: I started developing the technology about a dozen years ago. I 

worked on this one problem for 12 years consecutively. This is a project that I 

dedicated my life to a dozen years ago.  

 
WN: Let's go into the details. Tell me how it works. It can compress random data? 

PSG: If you say absolutely random, it's going to be very hard to agree what 

absolutely random is.  

 
WN: How do you get around the conventional wisdom that says simple 

mathematics says it's impossible? 

PSG: We plan to attack that issue head on. What hasn't been previously proven, 

we're proving. 

 
I have one quote I'd like to share with you: "The person who says it cannot be 

done should not interrupt the person doing it."

13



14

Universal data compression

Proposition.  No algorithm can compress every bitstring. 

 
Pf 1.  [by contradiction] 

・Suppose you have a universal data compression algorithm U  
that can compress every bitstream. 

・Given bitstring B0, compress it to get smaller bitstring B1. 

・Compress B1 to get a smaller bitstring B2. 

・Continue until reaching bitstring of size 0. 

・Implication:  all bitstrings can be compressed to 0 bits! 

 
 
Pf 2.  [by counting] 

・Suppose your algorithm that can compress all 1,000-bit strings. 

・21000 possible bitstrings with 1,000 bits. 

・Only 1 + 2 + 4 + … + 2998 + 2999 can be encoded with ≤ 999 bits. 

・Similarly, only 1 in 2499 bitstrings can be encoded with ≤ 500 bits!
Universal 

data compression?

.

.

.

U

U

U

U

U

U

!



Can you compress this string of decimal digits?

14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196
44288109756659334461284756482337867831652712019091
45648566923460348610454326648213393607260249141273
72458700660631558817488152092096282925409171536436
78925903600113305305488204665213841469519415116094
33057270365759591953092186117381932611793105118548
07446237996274956735188575272489122793818301194912
98336733624406566430860213949463952247371907021798
60943702770539217176293176752384674818467669405132
00056812714526356082778577134275778960917363717872
14684409012249534301465495853710507922796892589235
42019956112129021960864034418159813629774771309960
51870721134999999837297804995105973173281609631859
50244594553469083026425223082533446850352619311881
71010003137838752886587533208381420617177669147303
59825349042875546873115956286388235378759375195778
18577805321712268066130019278766111959092164201989 

15
It’s the first 1000 digits of pi after the decimal point. (But how to compress?)  
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Undecidability

A difficult file to compress: one million (pseudo-) random bits

% java RandomBits | java PictureDump 2000 500

1000000 bits

public class RandomBits 
{ 
   public static void main(String[] args)  
   { 
      int x = 11111; 
      for (int i = 0; i < 1000000; i++) 
      { 
         x = x * 314159 + 218281;  
         BinaryStdOut.write(x > 0);  
      } 
      BinaryStdOut.close(); 
   } 
}
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Rdenudcany in Enlgsih lnagugae

Q.  How much redundancy in the English language? 

A.  Quite a bit. 

 
 
 
 
 
 
 
 
 
 
 
 
The gaol of data cmperisoson is to inetdify rdenudcany and epxloit it. 

Aside.  Design an algorithm to correct text with letters permuted.

“ ... randomising letters in the middle of words [has] little or no 
effect on the ability of skilled readers to understand the text. This 
is easy to denmtrasote. In a pubiltacion of New Scnieitst you 
could ramdinose all the letetrs, keipeng the first two and last two 
the same, and reibadailty would hadrly be aftcfeed. My ansaylis 
did not come to much beucase the thoery at the time was for 
shape and senqeuce retigcionon. Saberi's work sugsegts we may 
have some pofrweul palrlael prsooscers at work. The resaon for 
this is suerly that idnetiyfing coentnt by paarllel prseocsing 
speeds up regnicoiton. We only need the first and last two letetrs 
to spot chganes in meniang. ”    — Graham Rawlinson



Rank these in the order of compressibility:  

1. An ASCII text file of Shakespeare’s works 

2. A bitmap image of this slide 

3. An mp3 file of Justin Bieber’s “Baby” 

A.  3 > 2 > 1

B.  3 > 1 > 2

C.  2 > 1 > 3

D.  2 > 3 > 1

E.  I don't know.

18

Data compression:  quiz 1



Compression still active area of research, big improvements possible

19
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Run-length encoding

Simple type of redundancy in a bitstream.  Long runs of repeated bits. 

 
 
Representation.  4-bit counts to represent alternating runs of 0s and 1s: 
15 0s, then 7 1s, then 7 0s, then 11 1s. 

 
 
 
Q.  How many bits to store the counts? 

A.  We typically use 8 (but 4 in the example above for brevity). 

 
Q.  What to do when run length exceeds max count? 

A.  Intersperse runs of length 0. 

 
 
Applications.  JPEG, ITU-T T4 Group 3 Fax, ...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1
15 7 7 11

16 bits (instead of 40)

40 bits



What is the best compression ratio achievable from run-length coding  
when using 8-bit counts? 

A.  1 / 256 

B.  1 / 16 

C.  8 / 255 

D.  24 / 510 =  4 / 85 

E.  I don't know.
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Data compression:  quiz 2
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5.5  DATA COMPRESSION



Use different number of bits to encode different chars. 

Assign shorter codes to more common chars. 

 
Ex.  Morse code:   • • • − − − • • • 

 
Issue.  Ambiguity.  

S O S  ? 

V 7  ? 

I A M I E  ? 

E E W N I  ? 

 
In practice.  Use a medium gap to 
separate codewords.
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Variable-length codes

codeword for S is a prefix 
of codeword for V



Q.  How do we avoid ambiguity? 

A.  Ensure that no codeword is a prefix of another. 

Ex 1.  Fixed-length code. 

Ex 2.  Append special stop character to each codeword. 

Ex 3.  General prefix-free code.
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Variable-length codes

Two prefix-free codes

011111110011001000111111100101
A   B   RA  CA  DA   B   RA  !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B  R A  C A  D A B  R A  !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Two prefix-free codes

011111110011001000111111100101
A   B   RA  CA  DA   B   RA  !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B  R A  C A  D A B  R A  !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring



Q.  How to represent the prefix-free code? 

A.  A binary trie! 

・Characters in leaves. 

・Codeword is path from root to leaf.

Two prefix-free codes

011111110011001000111111100101
A   B   RA  CA  DA   B   RA  !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B  R A  C A  D A B  R A  !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Two prefix-free codes

011111110011001000111111100101
A   B   RA  CA  DA   B   RA  !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B  R A  C A  D A B  R A  !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Two prefix-free codes

011111110011001000111111100101
A   B   RA  CA  DA   B   RA  !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B  R A  C A  D A B  R A  !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring
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Prefix-free codes:  trie representation

Two prefix-free codes

011111110011001000111111100101
A   B   RA  CA  DA   B   RA  !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B  R A  C A  D A B  R A  !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring
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Expansion. 

・Start at root. 

・Go left if bit is 0; go right if 1.  

・If leaf node, write character; return to root node; repeat. 

Q.  Why would this fail if the code isn’t prefix-free? 

A.  Internal nodes also have chars, but decompressor will never output them.

Prefix-free codes:  expansion

Two prefix-free codes

011111110011001000111111100101
A   B   RA  CA  DA   B   RA  !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B  R A  C A  D A B  R A  !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Two prefix-free codes
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11000111101011100110001111101
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00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring
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Compression: create ST of key-value pairs.

Prefix-free codes:  compression

Two prefix-free codes

011111110011001000111111100101
A   B   RA  CA  DA   B   RA  !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B  R A  C A  D A B  R A  !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Two prefix-free codes

011111110011001000111111100101
A   B   RA  CA  DA   B   RA  !
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110
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00 11
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011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring



Consider the following trie representation of a prefix-free code.  
Expand the compressed bitstring  100101000111011.  

A.  PEED  

B.  PESDEY  

C.  SPED  

D.  SPEEDY  

E.  I don't know.
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Data compression:  quiz 3

E

D

P Y

S

0 1

0 1

0 1

0 1
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Static model.  Use the same prefix-free code for all messages. 

Dynamic model.  Use a custom prefix-free code for each message. 

 
Compression. 

・Read message. 

・Build best prefix-free code for message. How?  [ahead] 

・Write prefix-free code (as a trie). 

・Compress message using prefix-free code. 

Expansion. 

・Read prefix-free code (as a trie) from file. 

・Read compressed message and expand using trie.

Huffman coding overview



Q.  How to write the trie? 

A.  Write preorder traversal of trie; mark leaf and internal nodes with a bit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Note.  If message is long, overhead of transmitting trie is small.
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Prefix-free codes:  how to transmit

Using preorder traversal to encode a trie as a bitstream

preorder
traversal

D R B

!

!

C

A

01010000010010100010001000010101010000110101010010101000010

internal nodes

leaves
BRC!DA

11

22

2211 33 44 55

33

44

55



Q.  How to write the trie? 

A.  Write preorder traversal of trie; mark leaf and internal nodes with a bit. 
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Prefix-free codes:  how to transmit

Using preorder traversal to encode a trie as a bitstream

preorder
traversal

D R B

!

!

C

A

01010000010010100010001000010101010000110101010010101000010

internal nodes

leaves
BRC!DA

11

22

2211 33 44 55

33

44

55

private static void writeTrie(Node x) 
{ 
   if (x.isLeaf()) 
   { 
      BinaryStdOut.write(true); 
      BinaryStdOut.write(???); 
      return; 
   } 
   BinaryStdOut.write(false); 
   writeTrie(???); 
   writeTrie(???); 
}

private static class Node implements Comparable<Node> 
{   
   private final char ch;   // used only for leaf nodes 
   private final int freq;  // used only by compress() 
   private final Node left, right; 
}



Q.  How to write the trie? 

A.  Write preorder traversal of trie; mark leaf and internal nodes with a bit. 

33

Prefix-free codes:  how to transmit

Using preorder traversal to encode a trie as a bitstream

preorder
traversal

D R B

!

!

C

A

01010000010010100010001000010101010000110101010010101000010

internal nodes

leaves
BRC!DA

11

22

2211 33 44 55

33

44

55

private static void writeTrie(Node x) 
{ 
   if (x.isLeaf()) 
   { 
      BinaryStdOut.write(true); 
      BinaryStdOut.write(x.ch, 8); 
      return; 
   } 
   BinaryStdOut.write(false); 
   writeTrie(x.left); 
   writeTrie(x.right); 
}

private static class Node implements Comparable<Node> 
{   
   private final char ch;   // used only for leaf nodes 
   private final int freq;  // used only by compress() 
   private final Node left, right; 
}



Q.  How to read in the trie? 

A.  Reconstruct from preorder traversal of trie.
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Prefix-free codes:  how to transmit

Using preorder traversal to encode a trie as a bitstream

preorder
traversal

D R B

!

!

C

A

01010000010010100010001000010101010000110101010010101000010

internal nodes

leaves
BRC!DA

11

22

2211 33 44 55

33

44

55

private static Node readTrie()  
{  
   if (BinaryStdIn.readBoolean())  
   { 
      char c = BinaryStdIn.readChar(8); 
      return new Node(c, 0, null, null); 
   } 
   Node x = readTrie(); 
   Node y = readTrie(); 
   return new Node('\0', 0, x, y);  
}  

arbitrary value 
(value not used with internal nodes)
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Huffman codes

Q. How to find best prefix-free code? 

 
Huffman algorithm: 

・Count frequency freq[i] for each char i in input. 

・Start with one node corresponding to each char i (with weight freq[i]). 

・Repeat until single trie formed: 

– select two tries with min weight freq[i] and freq[j] 

– merge into single trie with weight freq[i] + freq[j] 

 
 
Applications:



Huffman coding demo

・Count frequency for each character in input. A

B

C
D

R

!

char freq encoding

A B R A C A D A B R A !

input



Huffman coding demo

・Count frequency for each character in input. A

B

C
D

R

!

5

2

1
1

2

1

char freq encoding

A B R A C A D A B R A !

input



Huffman coding demo

・Start with one node corresponding to each character 
with weight equal to frequency.

! C D R B A1 1 1 2 2 5

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding



Huffman coding demo

・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

!1 C1 D1 R2 B2 A5

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding



Huffman coding demo

・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

!1 C1 D1 R2 B2 A5

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding



・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

2

0 1

Huffman coding demo

!1 C1

D1 R2 B2 A5

1

0

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding



・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

2

0 1

Huffman coding demo

!1 C1D1 R2 B2 A5

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding

1

0



・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

Huffman coding demo

2

! CD1 R2 B2 A5

1

0

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding

0 1



・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

Huffman coding demo

2

! CD1

1

0

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding

0 1

A5R2 B2



・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

3

0 1

Huffman coding demo

2

! C

D1

11
0

1 0

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding

0 1

A5R2 B2



・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

Huffman coding demo

1

0

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding

1
0

1

3

0 1

2

! C

D1

0 1

A5R2 B2



・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

Huffman coding demo

A5

3

! C

D

R2 B2

1 1
0

1 0

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding

0 1

0 1



・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

Huffman coding demo

A5

3

! C

D

R2 B2

1 1
0

1 0

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding

0 1

0 1



・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

4

0 1

Huffman coding demo

A5

R2 B2

3

! C

D

1 1
0

1

0

1 0

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding

0 1

0 1



・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

4

0 1

Huffman coding demo

A5

3

! C

D

R2 B2

1 1
0

1 0

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding

1

0

0 1

0 1



・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

Huffman coding demo

4

R B A5

3

! C

D

1

1 1
0

0

1 0

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding

0 1

0 1

10



・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

7

0 1

Huffman coding demo

4

R B

A5

3

! C

D

1

1 1
0

0

1

0
0

1

0 1 0

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding

0 1

0 1 10



・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

Huffman coding demo

A5

1

1 1
0

0

1 0

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding

1

0
0

1

0

7

0 1

4

R B

3

! C

D

0 1

0 1 10



・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

Huffman coding demo

A5

R B

! C

D

7

1 1

0 1 1
0 0

1 0

0 1 0

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding

0 1

0 1 10

0 1



・Select two tries with min weight. 

・Merge into single trie with cumulative weight.

12

0 1

Huffman coding demo

A5

R B

! C

D

7

1 1

0 1 1
0 0

1 0

0

1

1
1

1

1 0 1 0

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding

0 1

0 1 10

0 1



Huffman coding demo

A

R B

! C

D

0

1 1 1

1 0 1 1
1 0 0

1 1 0

1 0 1 0

A 5

B 2

C 1
D 1

R 2

! 1

char freq encoding

0 1

0 1 10

0 1

0 1



private static Node buildTrie(int[] freq) 
{ 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
}
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Constructing a Huffman encoding trie:  Java implementation

MinPQ<Node> pq = new MinPQ<Node>(); 
    for (char i = 0; i < R; i++) 
       if (freq[i] > 0)  
          pq.insert(new Node(i, freq[i], null, null));

while (pq.size() > 1)  
{   
   Node x = pq.delMin();  
   Node y = pq.delMin();  
   Node parent = new Node('\0', x.freq + y.freq, x, y);  
   pq.insert(parent);  
}

initialize PQ with 
singleton tries

merge two 
smallest tries

not used for 
internal nodes

total frequency two subtriesreturn pq.delMin();



Practice

Construct the Huffman code for the following strings: 

aababcabcdabcde 

abcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcd 
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Practice

Construct the Huffman code for the following strings: 

aababcabcdabcde 

abcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcd 
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a 11 

b 10 

c 01 

d 001 

e 000

a 00 

b 01 

c 10 

d 11 
Each codeword uses 2 bits, so no compression (or expansion) of input. 
Small overhead due to need to store trie.



Huffman coding: overview

Compression: high-level steps: 

・Build prefix-free code for message: 

– Tabulate character frequencies. 

– Recursively merge two min weight tries. 

・Write prefix-free code (as a trie). 

・Compress message using prefix-free code: 

– Build symbol table from characters to codewords. 

– Output codeword for each character in input. 

Expansion: high-level steps: 

・Read and decode prefix-free code (as a trie) from file. 

・Expand compressed message using trie: 

– Repeatedly find path from root to leaf in trie using bit sequence.

60



Proposition.  Huffman's algorithm produces an optimal prefix-free code.  
Pf.  See textbook. 

 
 
Two-pass implementation (for compression). 

・Pass 1:  tabulate character frequencies; build trie. 

・Pass 2:  encode file by traversing trie (or symbol table). 

 
Running time (for compression).  Using a binary heap  ⇒   N + R log R . 

Running time (for expansion).   Using a binary trie  ⇒   N . 

 
 
 
Q.  Can we do better?   [stay tuned]
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Huffman compression summary

no prefix-free code 
uses fewer bits

input 
size

alphabet 
size



Lossy vs. lossless compression

This lecture: lossless compression 

Images, music, videos, … :  

            lossy compression dramatically more effective
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http://algs4.cs.princeton.edu
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Algorithms

‣ introduction 

‣ run-length coding 

‣ Huffman compression 

‣ LZW compression

Jacob ZivAbraham Lempel

5.5  DATA COMPRESSION
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Statistical methods

Static model.  Same model for all texts. 

・Fast. 

・Not optimal:  different texts have different statistical properties. 

・Ex:  ASCII, Morse code. 

 
Dynamic model.  Generate model based on text. 

・Preliminary pass needed to generate model. 

・Must transmit the model. 

・Ex:  Huffman code. 

 
Adaptive model.  Progressively learn and update model as you read text. 

・More accurate modeling produces better compression. 

・Decoding must start from beginning. 

・Ex:  LZW.



A   B   R   A   C   A   D   A   B   R   A   B   R   A   B   R   AB

key value

AB 81

BR 82

RA 83

AC 84

CA 85

AD 86

65

LZW compression demo

key value

⋮ ⋮

A 41

B 42

C 43

D 44

⋮ ⋮

Ainput

matches

value 41 42 52 41 43 41 44 81 83 82 88 41

A B R A C A D A B R A B R A B R A

key value

DA 87

ABR 88

RAB 89

BRA 8A

ABRA 8B

B R A C A D A B R A B R A R A

LZW compression for A B R A C A D A B R A B R A B R A

codeword table
stop char: 80

80



LZW compression. 

・Create ST mapping string keys to W-bit codewords. 

・Initialize ST with codewords for single-character keys. 

・Find longest string s in ST that is a prefix of unscanned part of input. 

・Write the W-bit codeword associated with s. 

・Add s + c to ST, where c is next character in the input. 

 
Q.  How to represent LZW compression code table? 

A.  A trie to support longest prefix match.

66

Lempel-Ziv-Welch compression

longest prefix match

A

B C D AR A A

R BA

A

RB C D

88

81

8B

8A 89

84 86 85 87 8382

41 42 5243 44



41  42  52  41  43  41  44  81    83    82    88      41  80

key value

81 AB

82 BR

83 RA

84 AC

85 CA

86 AD

67

LZW expansion demo

key value

⋮ ⋮

41 A

42 B

43 C

44 D

⋮ ⋮

value

output A B R A C A D A B R A B R A B R A

key value

87 DA

88 ABR

89 RAB

8A BRA

8B ABRA

codeword table

LZW expansion for 41 42 52 41 43 41 44 81 83 82 88 41 80
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LZW expansion

LZW expansion. 

・Create ST mapping W-bit keys to string values. 

・Initialize ST to contain single-character values. 

・Read a W-bit key. 

・Find associated string value in ST and write it out. 

・Update ST. 

 
Q.  How to represent LZW expansion code table? 

A.  An array of length 2W.

key value

⋮ ⋮

65 A

66 B

67 C

68 D

⋮ ⋮

129 AB

130 BR

131 RA

132 AC

133 CA

134 AD

135 DA

136 ABR

137 RAB

138 BRA

139 ABRA

⋮ ⋮



What is the LZW compression of  ABABABA  ? 

A.  41 42 41 42 41 42 80 

B.  41 42 41 81 81 

C.  41 42 81 81 41 

D.  41 42 81 83 80 

E.  I don't know.
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Data compression:  quiz 4



A   B   A   B   A   B   A

key value

AB 81

BA 82

ABA 83
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LZW tricky case:  compression

key value

⋮ ⋮

A 41

B 42

C 43

D 44

⋮ ⋮

Ainput

matches

value 41 42 81 83 80

A B A B A B A

B A B A B A

LZW compression for ABABABA

codeword table



key value

81 AB

82 BA

83 ?ABxABA

41  42  81    83     80
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LZW tricky case:  expansion

key value

⋮ ⋮

41 A

42 B

43 C

44 D

⋮ ⋮

value

output A B A B A B x

LZW expansion for 41 42 81 83 80

need to know code for 83 
before it is in codeword table!

codeword table

we can deduce that
the code for 83 is ABx
for some character x

now, we have deduced x!

A B A
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LZW implementation details

How big to make ST? 

・How long is message? 

・Whole message similar model? 

・[many other variations] 

 
What to do when ST fills up? 

・Throw away and start over.  [GIF] 

・Throw away when not effective.  [Unix compress] 

・[many other variations] 

 
Why not put longer substrings in ST? 

・[many variations have been developed]
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LZW in the real world

Lempel-Ziv and friends. 

・LZ77. 

・LZ78.  

・LZW. 

・Deflate / zlib = LZ77 variant + Huffman. 

 
 
Unix compress, GIF, TIFF, V.42bis modem:  LZW. 
zip, 7zip, gzip, jar, png, pdf:  deflate / zlib. 
iPhone, Wii, Apache HTTP server:  deflate / zlib.

not patented 
(widely used in open source)

previously under patent
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Lossless data compression benchmarks

year scheme bits / char

1967 ASCII 7

1950 Huffman 4.7

1977 LZ77 3.94

1984 LZMW 3.32

1987 LZH 3.3

1987 move-to-front 3.24

1987 LZB 3.18

1987 gzip 2.71

1988 PPMC 2.48

1994 SAKDC 2.47

1994 PPM 2.34

1995 Burrows-Wheeler 2.29

1997 BOA 1.99

1999 RK 1.89

data compression using Calgary corpus

next programming assignment
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Data compression summary

Lossless compression. 

・Represent fixed-length symbols with variable-length codes.  [Huffman] 

・Represent variable-length symbols with fixed-length codes.  [LZW] 

 
Lossy compression.  [not covered in this course] 

・JPEG, MPEG, MP3, … 

・FFT/DCT, wavelets, fractals, … 

 
 
Theoretical limits on compression.  Shannon entropy: 

 
 
Practical compression.  Exploit extra knowledge whenever possible.

H(X) = �
nX

i

p(xi) lg p(xi)


