Algorithlns ROBERT SEDGEWICK | KEVID

5.4 REGULAR EXPRESSIONS

Review: substring search

» regular expressions
» REs and NFAs

» NFA simulation

» NFA construction

Algorithms

» applications

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

o Knuth-Morris-Pratt (deterministic finite automaton)
« Boyer-Moore (skip-ahead heuristic)
« Rabin-Karp (modular hashing)

Deterministic Finite Automaton o 1 2 3 4
« Abstract string-matching machine A ’]A ‘]3 ’;‘ ‘]3 ’5‘
« Represented by state-transition matrix B O 2 0 4 o0
« Reaches accept state = substring found cC o 0o 0 0 o0

W/ B

é;@— B—»@—A—» A C—»@

=

o~ =N W

Trick question

Which search pattern does this DFA correspond to?

N w
R = = =

A

Either an A or a B followed by a C.

Every string corresponds to a DFA,
but not every DFA corresponds to a string

Every DFA corresponds to a pattern called a regular expression
(strings are a simple type of regular expression)

5.4 REGULAR EXPRESSIONS

» regular expressions

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu




Finding interesting words

$ egrep 'A[a-j]1{8,}$"' /usr/share/dict/words
acidified
beachhead
beheaded
headache

$ egrep 'A[qwertyuiop]{10,}$' /usr/share/dict/words
perpetuity
proprietor
repertoire
typewriter

XKCD t-shirt

/Everybody stand back/

[ know regular expressions

Google allows a limited form of regular expression search

GO gle "it was the * of despair"

All Videos News Images Shopping More v Search tools

About 50,300,000 results (0.97 seconds)

A Tale of Two Cities - Wikiquote
https://en.wikiquote.org/wiki/A_Tale_of_Two_Cities ¥ Wikiquote

... of belief, it was the epoch of incredulity, it was the season of Light, it was the season
of Darkness, it was the spring of hope, it was the winter of despair...

A Tale of Two Cities - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/A_Tale_of_Two_Cities ¥ Wikipedia

A Tale of Two Cities (1859) is a novel by Charles Dickens, set in London and Paris
before and ... it was the season of Light, it was the season of Darkness, it was the spring
of hope, it was the winter of despair, we had everything before us, we ...

Genomics

« Fragile X syndrome is a common cause of mental retardation.
« A human's genome is a string.

i

e

« It contains triplet repeats of CGG or AGG, bracketed
by GCG at the beginning and CTG at the end.
« Number of repeats is variable and is correlated to syndrome.

pattern  GCG(CGG|AGG) *CTG

text GCGGCGTGTGTGCGAGAGAGTGGGTTTAAAGCTGGCGCGGAGGCGGCTGGCGCGGAGGCTG




Syntax highlighting Google code search
* Compilation: javac NFA.java Search public source code
*  Execution: java NFA regexp text [ Search
* Dependencies: Stack.java Bag.java Digraph.java DirectedDFS.java ‘ Code
A % java NFA " (A*B|AC)D" AAAABD Search via regular expression, e.g. Ajava/.*\.java$
* true
* % java NFA "(A*B|AC)D" AAAAC
* false
- y Search Options In Search Box
Pack: package:linux-
public class NFA ackage 26
{ a .
private Digraph G; // digraph of epsilon transitions Language  [(Any language t) langic++
private String regexp; // regular expression § file:(code]
private int M; // number of characters in regular expression File Path [rorlg)search
// Create the NFA for the given RE Class class:HashMap
public NFA(String regexp)
{ Function function:toString
this.regexp = regexp;
M = regexp.length(); License [(Any license 4] license:mozilla
Stack<Integer> ops = new Stack<Integer>();
G = new Digraph(M+1); Case n
Sensitive o A caseryes
GNU source-highlight 3.1.4 http://code.google.com/p/chromium/source/search
9
Prosite (computational biochemistry) Even more applications
Test if a string matches some pattern.
Home | ScanProsite | ProRule | Documents | Downloads | Links | Funding « Scan for virus Signatures
pr Database of protein domains, families and functional sites « Process natural language
 Specify a programming language.
PROSITE consists of documentation entries describing protein domains, families and functional sites as well as associated patterns and A A A PP A .
profiles to identity them [More... / References / Commercial users]. * Access information in digital libraries. _—
PROSITE is complemented by ProRule, a collection of rules based on profiles and patterns, which increases the discriminatory power of . "N,W
profiles and patterns by providing additional i ion about i and/or critical amino acids [More...]. o Search genome using PROSITE patterns. —
Release 20.113 of 26-Mar-2015 contains 1718 documentation entries, 1308 patterns, 1112 profiles and 1112 ProRule. o Fi Ite r text (S pam s NetNan ny’ Carn ivo re, malwa re). ::;
Search . Validate data-entry fields (dates, email, URL, credit card). ..
.g. PDOC00022, PS50089, SH3, zinc finger * by documentation entry
= * by ProRule description =
\ by taxonomic scope -
« by number of positive hits o
type an RE here Parse text files.
o (]
« Compile a Java program.
http:/ /prosite.expasy.org « Crawl and index the Web.
» Read in data stored in ad hoc input file format.
« Create Java documentation from Javadoc comments.
n




Regular expressions

A regular expression is a notation to specify a set of strings.

possibly infinite

Senpest foss netmEer

concatenation AABAAB AABAAB every other string
AA s oth .
or AA | BAAB BAAB every other string
star AB*A AA AB
(aka closure) ABBBBBBBBA ABABA
AAAAB her siri
A(A|B)AAB ABAAB every other string
parentheses
AB) *A A -
(AB) ABABABABABA ABBA

Regular expressions: operator precedence

« Star applies only to immediately preceding char or parenthetical group
AB*A

« | has the lowest priority
AA|BA*B(AB) *

Semee foss e

concatenation AABAAB AABAAB every other string
AA
or AA | BAAB BAAB every other string
star AB*A AA AB
(aka closure) ABBBBBBBBA ABABA
AAAAB
A(A|B)AAB ABAAB every other string
parentheses
ABY*A A AA
(AB) ABABABABABA ABBA

Regular expression: quiz 1

Which one of the following strings is not matched by the regular
expression (AB | C*D) * ?

A. ABABAB

B. CDCCDDDD
C. ABCCDAB

D. ABDABCABD
E.

1 don't know.

Regular expression shortcuts

Additional operations further extend the utility of REs.

Sxample RE coes not mateh

wildcard .U.U.U. 5323::3; TS:EE?SS[SJS

character class [A-Za-z][a-Z]* Cap'iwtoar:lcfi Jed Cﬂ’qﬁllzz-‘:le
one or more A(BCO)+DE Asgé:g[fE B?:[l))i_

exactly k [0-91(5}-10-91(4)  Soous soey o

Note. These operations are useful but not essential.
Ex. [A-E]+ is shorthand for (A|B|C|D|E)(A|B|C|D|E)*




Exercise

Simplify the following regular expression over the alphabet {A, B}:
(B | A*B* | BAA*) *

Exercise

Simplify the following regular expression over the alphabet {A, B}:
B | A*B* | BAA*)*

matches ‘A’

B | A*

Regular expression examples

RE notation is surprisingly expressive.

does et maKCh

-*SPB.* RASPBERRY SUBSPACE
(substring search) CRISPBREAD SUBSPECIES
[0-91{3}-[0-9]1{2}-[0-9]{4} 166-11-4433 11-55555555
(U. S. Social Security numbers) 166-45-1111 8675309
[a-z]+@([a-2z]+\.)+(edu|com) wayne@princeton.edu
spam@nowhere

rs@rinceton.edu

[$_A-Za-z][$_A-Za-z0-9]* ident3 3a
(Java identifiers) PatternMatcher ident#3

REs play a well-understood role in the theory of computation.

Exercise

Write a regular expression that matches strings of even length that start
with an ‘A’ and contain a ‘B’.




Exercise

Write a regular expression that matches strings of even length that start
with an ‘A’ and contain a ‘B’.

Case 1: A and B are separated by an even number of characters

A(C..)* B (..)*

Case 2: A and B are separated by an odd number of characters

AC.D)*.B. (..D)*

Put it together:
AC..)*B(..)* | AC..)*.B.(..)*

Optionally simplify:
A(C..)* (B | .B.)) (..%)

You can go crazy with regular expressions

Perl RE for valid RFC822 email addresses

@3 2:\R\?L \ED*(2: (73 (7 o<,
\NRZEARR G
\ED*T(2:

".\[\] \000-\0311+(?: (7 (’ \r\n)2[ \c]m\z\(7 \["O<0,;
00-\0311+(: AP\m2L \ED+\Z
VPN \000-\0311 407 (7: P rny?
A\ AL\ \000-\0311+(?: (2
AR 2L \ED\Z| 2=\

VAN I \r\\] \\. \(’ @: \r\n)’[ \ED)#" (23 (72

@ INANN N, 2 22\ 2L

RIS RN ERRORCIE

\[\]]))I\[([A\[\]\r\\] 1\ 2
LD (2

<@, A\ AN
A\ \[\]J))I\[(
WA NCCEANDIAPNT DA\ € Ar\n:
\[\JJ))\\[([A\[\]\r\\]\\\ INI(2: 2\ 2L \z])'))-)
[ \\ BRI TINNNIN: [T AR SR s
(DT RN ERE BP0 G RO IR RS
VAT \000-\03114(25 (2: (AW 2L \ED)+[\Z] Z-INT" 08, s :\\". AT \ECCANIVANT W\ )T €
\r\n)2[ \t])-l\lm-[\[ ()<>@ ADIDNCANDINAN WA 22 2
rin) [\!])o&\ll(’ D\ C AN (7 A" ¢
[\] \000-\0311+(7: 7: (2:\R\m)?L \t])»\\zm-[\[ [CEIEN
N1 AT NOOO-\OSLI(2: (22 (M2 \EDHNZ| 2=\ 0282\ \[\]]))\
\[\] \000-\0311+ (73 (22 \r\n)’[ \ED+[\Z| (7=[\["
00-\0311+(?7: 0?0 \E1)+1\2] (2
F\WSANNT)

p[([’*\[\]\r\\]l\\ BENTE
MDA WD ATC

VAR 000\ 2
5\ \000-1031]+(?: (22

@
2wl \t])'m

\ [ A\ (?; )
Rt S NG (535
. AMZ[ \ED)*" (2: (2:\r\) 2L \ED ) (2:\. (7
(’ [A\“\r\\]\\\ 125 2:\PA 2L \ED)*" (23 (73 ?
N N T NP S A D S VS
\]])H\[( ’\\[\]\ \\] \\ )'\](7 @AM )| (7: [A0<8,
2:\r\n?[ \] M?L D \<(: (2:\r\m) 2L \ED*(2:
A\[\]\r\\]\\\ )*\](

: l‘\")’[ \t])‘I\Z\U-[\ O<a, \\ \[\]]))\\[([A\[\
AR DN a0 PN
l‘\")7[ AMD+NZ| Z=\["O<@, ; :\\ \[\]]))\\[( IANAVALANY |

@AM 7LD+ \Z] 2=[\[" O <@, :\\" A\ [ (7: [A\"
\[\] \000 \031]+(?: (7. o \\

>a,

R s S
: \r\n)?[ \t) 92?2 [A()<>a ;
\r\n)’[ \ED 23\ r\m?[ \eD*(2:
ZQANDE D) 2 2L \t])*))‘m(" (B SH
\[\]]))I\[([A\ \]\r\\]\\\ )"\](7 @: $(@:\r\m) 70

AR2L e+ \Z] =\ C
2:(2:\r\m?[ \£])+[\Z
AR 7L \eD+[\Z] (=

@ \r\n)’[ AT (2
@:\P\D?0 \ED# 22\

[’\\"\ \\]E A\ { $2:\r\m7[ \ED) " (72 (7:\r\n) 7 [ \(])'))“E(’
R NHIRRRRU NS R @ s\t \ehh R 21 ¢
0@, : :\\" AN )|\[([A\[\J\r\\]\\\ I\1(2: (Z:\r\m)2[ \t])*))'\(
AP . | (23 2\ 2L\ \r\m 20\ M\<(?:

N Rh NS ENAENTING ) \]( A\RM?L LD (22, ¢
AT VAN WD AT @ Z:ARm 7L \eD$)*2:,aC
A\LIDY NLCEADNINPNT N\ 2 (AR 2L \ED N 23\
AL\ (2: 2
AN I ARG e %22\ (7: (2:\r\n) @[

AR TR ST AR B R T3 th: RIS RS54
A AN NECEADNANNT WD S\ (2 AR 70 \ED (73 AP\ 2L\t *(7: [’\()<>El,,:
ALY NCCEADIAPWT DA 2 ZARM 7L \ED*I>(2: A 2L \t1)*))75\s*)

NV
BRE B0

@:\r\m?[ \t])*l\z\(?
AW"ALM \000-\0311+(7: (2 \r\n)’[ (R

WO \000-\031+ (23 (7: 2 NS \z])*\\z;(v [\[
[AC -\[\] \000-\031]

\" [\ \0oo- \un].(’ (7 \m?7L \c]m\z

http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.html

Regular expression caveat

Writing a RE is like writing a program.
« Need to understand programming model. x
Can be easier to write than read.
Can be difficult to debug.

Regular Expression

“ Some people, when confronted with a problem, think
‘I know I'll use regular expressions.” Now they have
two problems. ”

— Jamie Zawinski

Bottom line. REs are amazingly powerful and expressive,

but using them in applications can be amazingly complex and error-prone.

5.4 REGULAR EXPRESSIONS

» REs and NFAs

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu




Duality between REs and DFAs

RE. Concise way to describe a set of strings.
DFA. Machine to recognize whether a given string is in a given set.

Kleene's theorem.
e For any DFA, there exists a RE that describes the same set of strings.
« For any RE, there exists a DFA that recognizes the same set of strings.

()

—

/N
e

number of 1's is a multiple of 3

RE 0% | (0%10%10%10%)* DFA

number of 1's is a multiple of 3

ul
Stephen Kleene
Princeton Ph.D. 1934

Pattern matching implementation: basic plan (first attempt)

Overview is the same as for KMP.
« No backup in text input stream.
« Linear-time guarantee.

Underlying abstraction. Deterministic finite state automata (DFA).

Basic plan. [apply Kleene’s theorem]
 Build DFA from RE.
« Simulate DFA with text as input.

pattern
cceﬂ‘
(S matches text

text

DFA for pattern
AAAABD mmmm) (A%B|AC)D "ejoce

pattern does not
match text

Bad news. Basic plan is infeasible (DFA may have exponential # of states).

Pattern matching implementation: basic plan (revised)

Overview is similar to KMP.
« No backup in text input stream.
« Quadratic-time guarantee (linear-time typical).

Underlying abstraction. Nondeterministic finite state automata (NFA).

Basic plan. [apply Kleene’s theorem]
« Build NFA from RE.
« Simulate NFA with text as input.

pattern

x
39‘?'9 matches text
text

NFA for pattern
AAAABD  mmm  (A%B|AC)D ey

\ pattern does not

match text

Q. What is an NFA?

Nondeterministic finite-state automata

Regular-expression-matching NFA.

« We assume RE enclosed in parentheses. G GETS [ [EECS, Hel GElRs

« One state per RE character (start = 0, accept = M). /

« Match transition (change state and scan to next text char).

« Dashed e-transition (change state, but don't scan text).

« Accept if any sequence of transitions ends in accept state.

after scanning all text characters

Nondeterminism.

» One view: machine can guess the proper sequence of state transitions.

« Another view: sequence is a proof that the machine accepts the text.

accept state

NFA corresponding to the pattern ( (A * B | AC) D)




Nondeterministic finite-state automata

Q. IsAAAABD matched by NFA?
A. Yes, because some sequence of legal transitions ends in state 11.

A A A A B D
0—>1—>27>3—>2—>3—>2—>3—>2—>3>4—->5>8—>9—>10—>11
match transition: e-transition:

scan to next input character change state
and change state with no match

accept state reached
and all text characters scanned:
pattern found

DD B

NFA corresponding to the pattern ( (A * B | AC) D)

Nondeterministic finite-state automata

Q. IsAAAABD matched by NFA?
A. Yes, because some sequence of legal transitions ends in state 11.
[ even though some sequences end in wrong state or get stuck ]

wrong guess if input is
A A A A BD

|
0—>1—>6—>7 ~_ 1o way out
of state 7

-

NFA corresponding to the pattern ( (A * B | AC) D)

Nondeterministic finite-state automata

Q. Is AAAC matched by NFA?
A. No, because no sequence of legal transitions ends in state 11.
[ but need to argue about all possible sequences ]

A A A A C

0—>1—>2—>3—>2—>3—>2—>3—>2—>3—>4 ~__no way out
of state 4

2 3

LoDl B Do el

-6

NFA corresponding to the pattern ( (A * B | AC) D)

Nondeterminism

Q. How to determine whether a string is matched by an automaton?

DFA. Deterministic = easy (only one applicable transition at each step).

NFA. Nondeterministic = hard (can be several applicable transitions at
each step; need to select the "right" ones!)

Q. How to simulate NFA?
A. Systematically consider all possible transition sequences. [stay tuned]

NFA corresponding to the pattern ( (A * B | AC) D)




NFA vs. quantum computers

How are nondeterministic finite automata different from quantum computers?

Quantum computers are actually, physically nondeterministic.

With NFAs, we’re just pretending.

We can simulate them efficiently with regular computers (Turing machines).
We can’t do that with quantum computers (as far as we know).

NFA representation

State names. Integers from 0 to M.

number of symbols in RE

0 1

Match-transitions. Keep regular expression in array re[].
2 3

7 8 9 10
refll] ¢ C A * B

e-transitions. Store in a digraph G.

0—1, 1—2, 1—6, 2—3, 3—2, 3—4, 58, 8—9, 10—11

NFA corresponding to the pattern ( (A * B | AC) D)

accept state

5.4 REGULAR EXPRESSIONS

Algo rithms » NFA simulation

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

NFA simulation

Q. How to efficiently simulate an NFA?

A. Maintain set of all possible states that NFA could be in
after reading in the first i text characters.

one step in simulating an NFA

p (7’ R‘o °° .o
. ‘i 5 .‘Vi'\.;' ° .0
VAP . )

o ©®
possible transitions on possible null transitions
before reading next symbol

all states reachable all states reachable
after reading i symbols reading (i+1)st symbol ¢ after reading i+1 symbols

Q. How to perform reachability?

A. DFS with multiple source vertices




NFA simulation demo

Goal. Check whether input matches pattern.

input A A B D

&-transitions match transitions

NFA corresponding to the pattern ( (A * B | AC) D)

NFA simulation demo

Before reading any input characters:
« Find states reachable by e-transitions from start state

input A A B D

NFA simulation demo

Before reading any input characters:
. Find states reachable by e-transitions from start state

input A A B D
e-transitions

0500050 0.0 © O ©® O O

set of states reachable via e-transitions from start

NFA simulation demo

Before reading any input characters:
« Find states reachable by e-transitions from start state

input A A B D

1 2

060000 00GC0O0E O

set of states reachable via e-transitions from start: {0,1,2,3,4,6}




NFA simulation demo

Before reading any input characters:
« Find states reachable by e-transitions from start state

input A A B D

set of states reachable via e-transitions from start: {0,1,2,3,4,6}

NFA simulation demo

Read next input character.
« Find states reachable by match transitions.
. Find states reachable by e-transitions

input A A B D
t

match A transitions

© 0 0 ® DO >0 O ® O

set of states reachable after matching A

NFA simulation demo

Read next input character.
« Find states reachable by match transitions.
« Find states reachable by e-transitions

input A A B D

ololcS WOSONC Soloso

set of states reachable after matching A: {3,7}

NFA simulation demo

Read next input character.
« Find states reachable by match transitions.
. Find states reachable by e-transitions

input A B D

e-transitions

© 00 O O 6 e O

set of states reachable via e-transitions after matching A




NFA simulation demo

Read next input character.
« Find states reachable by match transitions.
« Find states reachable by e-transitions

input A B D

1 2

© 0 @

set of states reachable via e-transitions after matching A: {2,3,4,7}

(X Molicl WoRclose

NFA simulation demo

Read next input character.
« Find states reachable by match transitions.
. Find states reachable by e-transitions

input A B D

set of states reachable via e-transitions after matching A: {2,3,4,7}

NFA simulation demo

Read next input character.
« Find states reachable by match transitions.
« Find states reachable by e-transitions

input A B D

match A transitions

7 8 9

50 ® 0 OO

set of states reachable after matching A A

10

NFA simulation demo

Read next input character.
« Find states reachable by match transitions.
. Find states reachable by e-transitions

input A B D

6 7

®—©

© OO0 ® O @-C

set of states reachable after matching AA: {3}




NFA simulation demo

Read next input character.
« Find states reachable by match transitions.
« Find states reachable by e-transitions

input B D
e-transitions

©0 0 OO O O G OO

set of states reachable via e-transitions after matching A A

NFA simulation demo

Read next input character.
« Find states reachable by match transitions.
. Find states reachable by e-transitions

input B D

© 0000 DO e O

set of states reachable via e-transitions after matching AA: {2,3,4}

NFA simulation demo

Read next input character.
« Find states reachable by match transitions.
« Find states reachable by e-transitions

input B D

set of states reachable via e-transitions after matching AA: {2,3,4}

NFA simulation demo

Read next input character.
« Find states reachable by match transitions.
. Find states reachable by e-transitions

input B D

match B transition

7

® 0 >0 ® ©

10

O @

set of states reachable after matching A A B




NFA simulation demo

Read next input character.

©

« Find states reachable by match transitions.
« Find states reachable by e-transitions

input B D

4 5 6 7

® 0 ®» OO O

10 11

© ®-O

set of states reachable after matching AAB: {5}

NFA simulation demo

Read next input character.
« Find states reachable by match transitions.
. Find states reachable by e-transitions

input D

e-transitions

©0® 060 60 000 O

set of states reachable via e-transitions after matching A A B

NFA simulation demo

Read next input character.

©

« Find states reachable by match transitions.
« Find states reachable by e-transitions

input D

1 2

ORORORCKE NoNCR X Nore

set of states reachable via e-transitions after matching AAB: {5,8,9}

NFA simulation demo

Read next input character.
« Find states reachable by match transitions.
. Find states reachable by e-transitions

input D

........ Fee

set of states reachable via e-transitions after matching AAB: {5,8,9}

4




NFA simulation demo

Read next input character.
« Find states reachable by match transitions.
« Find states reachable by e-transitions

input D

match D transition

1 2

© O ®

11

O ®0 ®O0 >0 O

set of states reachable after matching A A B D

NFA simulation demo

Read next input character.

©

« Find states reachable by match transitions.
. Find states reachable by e-transitions

input D

1 2

OO0 ®0 ®60 0 o0 O

set of states reachable after matching AABD: {10}

NFA simulation demo

Read next input character.
« Find states reachable by match transitions.
« Find states reachable by e-transitions

input

e-transitions

0 1 2 3

©O0® 060 00 60 06 0>

set of states reachable via e-transitions after matching AAB D

NFA simulation demo

Read next input character.

©

« Find states reachable by match transitions.
. Find states reachable by e-transitions

input

1 2

ODO®0® 600 0 e

set of states reachable via e-transitions after matching AABD: {10, 11}




NFA simulation demo

When no more input characters:

« Accept if any state reachable is an accept state.

« Reject otherwise.

input

set of states reachable : {

accept !

10,11}

NFA simulation: analysis

Proposition. Determining whether an N-character text is recognized by the
NFA corresponding to an M-character pattern takes time proportional to M
N in the worst case.

Pf. For each of the N text characters, we iterate through a set of states of
size no more than M and run DFS on the graph of e-transitions.

[The NFA construction we will consider ensures the number of edges <
3M.]

accept state

NFA corresponding to the pattern ( (A * B | AC) D)

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

5.4 REGULAR EXPRESSIONS

» NFA construction

Building an NFA corresponding to an RE

States. Include a state for each symbol in the RE, plus an accept state.

COOO®OOOOBOI,

NFA corresponding to the pattern ( (A * B | AC) D)




Building an NFA corresponding to an RE

Concatenation. Add match-transition edge from state corresponding
to characters in the alphabet to next state.

Alphabet. A B CD
Metacharacters. ( )

O O =0 G0 G—E—0 E—0

NFA corresponding to the pattern ( (A * B | AC) D)

Building an NFA corresponding to an RE

Parentheses. Add e-transition edge from parentheses to next state.

NFA corresponding to the pattern ( (A * B | AC) D)

Building an NFA corresponding to an RE

Closure. Add three e-transition edges for each * operator.

singe-character closure closure expression

NFA corresponding to the pattern ( (A * B | AC) D)

Building an NFA corresponding to an RE

2-way or. Add two e-transition edges for each | operator.

2-way or expression

©

NFA corresponding to the pattern ( (A * B | AC) D)




Building an NFA corresponding to an RE Regular expression: quiz 4

States. Include a state for each symbol in the RE, plus an accept state. How would you modify the NFA below to match ( (ABC*)+) ?

Concatenation. Add match-transition edge from state corresponding A. Remove e-transition edge 1-7.
to characters in the alphabet to next state. one or more occurrence

- Remove e-transition edge 7—1.
Parentheses. Add e-transition edge from parentheses to next state.

B
Closure. Add three e-transition edges for each * operator. C. Remove e-transition edges 1-7 and 7—1.
D

2-way or. Add two e-transition edges for each | operator. 1 don't know.

9
>

accept state

NFA corresponding to the pattern ( (A * B | AC) D) NFA corresponding to the pattern ( (AB C * ) * )

Industrial-strength grep implementation

To complete the implementation:
« Add multiway or.

« Handle metacharacters.

“Regular
Expressions

» Support character classes. Crrolibroroll

5.4 REGULAR EXPRESSIONS « Add capturing capabilities.

« Extend the closure operator.
« Error checking and recovery.

« Greedy vs. reluctant matching.
Algorithms

» app/icafions Ex. Which substring(s) should be matched by the RE <blink>.*</blink> ?

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu
reluctant reluctant

<blink>text</blink>some text<blink>more text</blink>

greedy




Regular expressions in the wild

Broadly applicable programmer's tool.
« Originated in Unix in the 1970s.
« Built in to many tools: grep, egrep, emacs, .... |

e _9

grep
| v maze (/

print all lines containing NEWLINE which

% grep 'NEWLINE' */*.java <—— N
occurs in any file with a . java extension

% egrep 'Algwertyuiop]*[zxcvbnm]*$' words.txt | egrep '...........
typewritten

« Built in to many languages: awk, Perl, PHP, Python, JavaScript, ....

replace all occurrences of from

% perl -p -1 -e 's|from|to|g" input.txt with to in the file input. txt

% perl -n -e 'print if /A[A-Z][A-Za-z]*$/' words.txt «—— printall words that start
T with uppercase letter

do for each line

Regular expressions in Java

Validity checking. Does the input match the re?
Java string library. Use input.matches(re) for basic RE matching.

public class Validate

{
public static void main(String[] args)
{
String regexp = args[0];
String input = args[1];
StdOut.printin(input.matches(re));
}
}

% java Validate "[$_A-Za-z][$_A-Za-z0-9]*" identl23
true

«——— legal Java identifier

% java Validate "[a-z]+@([a-z]+\.)+(edu|com)" rs@cs.princeton.edu «  Vvalid email address
true (simplified)

% java Validate "[0-91{3}-[0-91{2}-[0-9]{4}" 166-11-4433
true

<«——— Social Security number

Harvesting information

Goal. Print all substrings of input that match a RE.

% java Harvester "gcg(cgg|agg)*ctg" chromosomeX.txt

gcgceggeggeggeggeggcetg
gcgetg T
gcgctg harvest patterns from DNA

gcgeggeggcggaggeggaggeggetg

harvest links from website

|

% java Harvester "http://Q\w+\.)*(\w+)" http://www.cs.princeton.edu
http://www.w3.org

http://www.cs.princeton.edu

http://drupal.org

http://csguide.cs.princeton.edu

http://www.cs.princeton.edu

http://www.princeton.edu

Harvesting information

RE pattern matching is implemented in Java's java.util.regexp.Pattern and
java.util.regexp.Matcher classes

import java.util.regex.Pattern;
import java.util.regex.Matcher;

compile() creates a

public class Harvester pattern (NFA) from RE

{
public static void main(String[] args)
{

matcher () creates a
Matcher (NFA simulator)
/ from NFA and text

£ind() looks for
the next match

String regexp = args[0];
In in new In(args[1]);

String input = in.readA110Q);

Pattern pattern = Pattern.compile(re
Matcher matcher = pattern.matcher(input);
while (matcher.find())

StdOut.printin(matcher.group();

) ) ~\\\\“~\\\\\~ group() returns

the substring most
recently found by £ind()

/




Algorithmic complexity attacks

Warning. Typical implementations do not guarantee performance!

N

Unix grep, Java, Perl, Python

% java Validate " 1.6 seconds
% java Validate " 3.7 seconds
% java Validate "(a|aa)*b" 9.7 seconds
% java Validate "(a|aa)*b" aaaaa 23.2 seconds
% java Validate "(a|aa)*b" aaaaa 62.2 seconds
% java Validate "(a|aa)*b" aaaaa aaaaaac 161.6 seconds

SpamAssassin regular expression.

% java RE "[a-z]+@[a-z]+([a-z\.]+\.)+[a-z]+" Spammer@x.........oueveeuunnrnn

» Takes exponential time on pathological email addresses.
« Attacker can use such addresses to DOS a mail server.

Not-so-regular expressions

Back-references.
- \1 notation matches subexpression that was matched earlier.
« Supported by typical RE implementations.

C.H\1 // beriberi couscous
1?7$|A(11+?2)\1+ // 1111 111111 111111111

Some non-regular languages.
* Strings of the form ww for some string w: beriberi.
« Unary strings with a composite number of 1s: 111111.
« Bitstrings with an equal number of Os and 1s: 01110100.

» Watson-Crick complemented palindromes: atttcggaaat.

Remark. Pattern matching with back-references is intractable.

Harvesting information in Java

RE pattern matching is implemented in Java's java.util.regexp.Pattern and
java.util.regexp.Matcher classes.

import java.util.regex.Pattern;
import java.util.regex.Matcher;
compile() creates a

public class Harvester pattern (NFA) from RE

{

public static void main(String[] args)

{
Str? ng regexp = args[0]; Matcher (NFA simulator)
o pev In(args L1 / from NFA and text
String input in.readA110Q);
Pattern pattern = Pattern.compile(re 8
Matcher matcher = pattern.matcher(input);

while (matcher.find()) £ind() looks for
{ the next match

matcher () creates a

StdOut.printin(matcher.group());

/

}

) y \ group() returns

the substring most
recently found by £ind()

Regular expressions in context

Regexes are powerful, but far less powerful than Java programs.

Compiler. A program that translates a program to machine code.
« KMP string = DFA.

.« grep RE = NFA.

. javac Javalanguage = Java byte code.

pattern string RE program
parser unnecessary check if legal check if legal
compiler output DFA NFA byte code

simulator DFA simulator NFA simulator JVM




Algorithmic complexity attacks

Warning. Typical implementations do not guarantee performance!

N

Unix grep, Java, Perl, Python

% java Validate "(a|aa)*b" 1.6 seconds
% java Validate "(a|aa)*b" 3.7 seconds
% java Validate "(a|aa)*b" 9.7 seconds
% java Validate "(a|aa)*b" aaaaa aa aa 23.2 seconds
% java Validate "(a|aa)*b" aaaaa aa aaaa 62.2 seconds
% java Validate "(a|aa)*b" aaaaa a aa aaaaaac 161.6 seconds

SpamAssassin regular expression.

% java RE "[a-z]+@[a-z]+([a-z\.]+\.)+[a-z]+" Spammer@x.........oueveeuunnrnn

» Takes exponential time on pathological email addresses.
« Attacker can use such addresses to DOS a mail server.

Summary of pattern-matching algorithms

Programmer.
« Implement substring search via DFA simulation.
« Implement RE pattern matching via NFA simulation.

Theoretician. («\
« RE is a compact description of a set of strings. )
/

« NFA is an abstract machine equivalent in power to RE.
« DFAs, NFAs, and REs have limitations.

You.
« Core CS principles provide useful tools that you can exploit now.
« REs and NFAs provide introduction to theoretical CS.

Example of essential paradigm in computer science.
« Build the right intermediate abstractions.
« Solve important practical problems.




