A 1 g() I 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

4.1 UNDIRECTED GRAPHS

» introduction

» graph AP/

» depth-first search

» breadth-first search
» challenges

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu 2 f/lpped /eCfUI’e eXperimenf

4.1 UNDIRECTED GRAPHS

» introduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?
 Thousands of practical applications.
« Hundreds of graph algorithms known.
» Interesting and broadly useful abstraction.

« Challenging branch of computer science and discrete math.

Protein-protein interaction network

Reference: Jeong et al, Nature Review | Genetics

Framingham heart study

)

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

The evolution of FCC lobbying coalitions

Fred Willamson & Associates Consolidated Companies

Vermont PSB CO Tel. Association Y R Fitch Affordable Teleco! PriorityOne Raw Bandws
® «crr Mid-Rivers : . Great Plains Comm. e Telecom _ ~1e™0 Crri
~__ ORTel. Association & =~
N » Vermont DPS ° MT Tel /‘ o ®
Home Teleph = mrs'® .@"d/m/‘ Association Bluegrass Wireless Hiawatha Broadband
lephone T ® Wyoming PSC e Focal Norligh‘lr Integra Telecom O.Knology
paT < TP . o
Missoula Plan Suppoders | | =\ o Birl o heiransne, 4 u® TelCove e
. ® o ¥ i A Bridgecom Eanhlink” o
Rural Utilities Service MclsodUsa - | . SR L
\USDA .Momana PSC 7 o y "
Lincolnville Networks M
.
.O;dodedednne DC PSC
.
L]
ArContact Communications New York PSC
® . Virual Geosatellite .
.
lobal i
Hot Springs Telephone Global Crossing
QbRonanTelephone

Telesat
L]

Hughes
®__ Inmarsat
e

MSV. WildBlue
. .

Public Service Telephone
Townes Telecommunications
L]
Venture Communications Cooperative
DCI Voice Solutions ® .Somh Slope

|Core Communications State of Hawaii

rofinz rel < ® ® SutecfAlaska
LA RN s S .
ced Pagi Compminicationsy, Celluar South s 0% KMC Telecom
Adva "3 . T A A —— Telnet Worldwide e spire - ;
. NEP sstern Wireless Rucal Chlidiay Aaséci ‘gd,: — v \1;03Tel . o .CommumcabonsAdwsotyComsel
¢ AT&T Wireless SunCom Wireless @/ < L1 ¢ - reent TDS Telecom
® SpamPCS ™ LA/ T 7 ellCom Al of Rural CMRS Cari Conve o People's Telephone
. VoiceStream Wireless TG '\ US/Callgtar A7 /% de @ rEnee ernurE mees NTca NECA o Cascade Utlities
.) [] & X . = L = r X% .
.Telstar Communications o ‘ Celilar— LﬁqE Colorado Cellular Balhoff & Rowe L] .Molalla Communmbons 20 %eaver Creek Telephone
Aventure S\ MobiPCS . ERTA ylwip i :
Audiocom ™ All American Telephone Seith Bagley S Montana PCS Fronter Windstream » X Telecomm {Trans Cascades Telephone
| S Global Confe o * ® O Emam o P S Sy
.FBN Indiana o™ Paniners .Easterbmohe Cellular b = wia OPAST ?%TA .Mm'[depm T .Oregon-ldaho Utilities
.Free Conferencing lowa Network Services Midwest Wireless P P :mmryTeJ Y —~———e o " Humbeldt Telephone
Baraga Telephone ¢ ° . lovaTel O o :\"'-b’, Pepicee i T
. é&mﬁl:m Network .B'“;T:p:“”"“':;::s +"" Cossolced Commuricatons Grest Lakes Communicaions * Plresr Teephone \Jrekix Telephone
~— Wi Teleph
2\ Onvoy » .Sure est .\. .Staymn lephone

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

Map of science clickstreams

Minerology

> Acoustics

L} ~ .
®0 o o
Manufacturing N
Production ° Material science
research Engineering

L3
Economics

Applied
physics

Statisticalg i e
physics €
L]

Physical
chemistry, % ¢

e ® oo ve
> G "Phi(osophy’ "~
Social work o @ ..,)‘
..' . P\C:”(Ij Religign *
®e sychology g

\ .
Social\and personality . o _-*Pharmaceutical

psychology Biochemistry Q o . research
L)

® -,
® /Anthropology. o-d *
®" Psychology @ b o Chemical
° . 9 [) Engineering
® L]
¢ °

L b
..Cogmhve
Science

o
J L) Animal
o %2gohaviole
9 o0

http:/ /www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

10 million Facebook friends

Iacebook December 2010

"Visualizing Friendships" by Paul Butler

. __
The Internet as mapped by the Opte Project

.33.209.29 (0.33.208

07.205.230.105

07.205.230\ 23
07.209.230.128

07.205.230.117
07.205.25!

7296030102
/ 07.205.230.174

g 07.209)
=% s

\

P47\205.23\ 26
07.205.24

http://en.wikipedia.org/wiki/Internet 4
< 07.205.230.113(; 06 530/) £ 20k 25\

07.205.2%0.155
67.205.249.10 R0X.205.230.190 07.2

Terrorist networks

Relationships among individuals associated with the 2004 Madrid bombings

Connecting the Dots: Can the tools of graph theory and social-network studies unravel the next big plot?
http://www.americanscientist.org/issues/pub/connecting-the-dots

10

Sexual network

"o
-
LW o
‘*’ L ¥ ”', /
e ¥ 2. ¥55° 3
;.}‘_._-0-“ ¥, » YO s 2
& AT, DN e Y — “ N
J:?;;ls ‘\ .) *l‘;1h.k’ v /‘l
4" SRS &
= R 4
v ’:5"» 2K
4 '2?\ ——— el
o Xi%h 1

\ \ 03
> L | ——) ® Male

Femals

Structure of romantic and sexual relations at "Jefferson High School”

11

Graph applications

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

molecule

telephone, computer
gate, register, processor

joint

stock, currency

intersection

class C network

board position
person
neuron
protein

atom

fiber optic cable
wire
rod, beam, spring
transactions
street
connection
legal move
friendship
synapse
protein-protein interaction

bond

12

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

vertex

cycle of edge

length 5 \ l

path of
« length 4
vertex of
degree 3 "\
connected

components

13

Some graph-processing problems

s-t path Is there a path between s and t ?
shortest s-t path What is the shortest path between s and t ?
cycle Is there a cycle in the graph ?
Euler cycle Is there a cycle that uses each edge exactly once ?
Hamilton cycle Is there a cycle that uses each vertex exactly once ?
connectivity Is there a path between every pair of vertices ?
biconnectivity Is there a vertex whose removal disconnects the graph ?
planarity Can the graph be drawn in the plane with no crossing edges ?
graph isomorphism Are two graphs isomorphic?

Challenge. Which graph problems are easy? difficult? intractable?

14

4.1 UNDIRECTED GRAPHS

» graph AP/

Algorithms

http://algs4.cs.princeton.edu

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

s =g @\@ Y0

two drawings of the same graph

Caveat. Intuition can be misleading.

Graph representation

Vertex representation.
e This lecture: use integers between 0 and V- 1.
« Applications: convert between names and integers with symbol table.

symbol table

self loop p Zdrgélsel

Anomalies. .@Q

Graph API

public class Graph

Graph(int V)

void addEdge(int v, int w)
Iterable<Integer> adj(int v)

int VQ)

// degree of vertex v in graph G
public static int degree(Graph G, int v)
{
int degree = 0;
for (int w : G.adj(v))
degree++;
return degree;

create an empty graph with V vertices

add an edge v-w
vertices adjacent to v

number of vertices

N

Toy API. No efficient
way to compute degree,

check if edge exists, etc.

18

Graph representation: adjacency matrix

Maintain a two-dimensional V-by-V boolean array;

adj[w][v] = true.

adj[v][w]

for each edge v—w in graph:

two entries

for each edge

11 12

10

10

12

19

Undirected graphs: quiz 1

Which is order of growth of running time of the following code fragment if
the graph uses the adjacency-matrix representation, where V is the number
of vertices and E is the number of edges?

for (int v = 0; v < G.VQO; v++)
for (int w : G.adj(v))
StdOut.println(v + "-" + w);

prints edges

A. V

B. E+V

C. V2

D. VE

E. I don't know.

Graph representation: adjacency lists

Maintain vertex-indexed array of lists.

e[-5)
™0
~[0]
~5[1]
~51-{e3]
~GH 0]

Bag objects

Q

o
.
/i
L

\:
()
TN
;

representations
of the same edge

=
o

™11 10 12

i
%

We use Bag objects because we don’t care about the

order in which we iterate over the adjacent vertices.

Undirected graphs: quiz 2

Which is order of growth of running time of the following code fragment if
the graph uses the adjacency-lists representation, where V is the number of
vertices and E is the number of edges?

for (int v = 0; v < G.VQ; v++)
for (int w : G.adj(v))
StdOut.println(v + "-" + w);

prints edges

A. V

B. E+V

C. V2

D. VE

E. [don't know.

22

Graph representations

In practice. Use adjacency-lists representation.
« Algorithms based on iterating over vertices adjacent to v.
« Real-world graphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

sparse (E=200) dense (E=1000)

Two graphs (V = 50)

23

Graph representations

In practice. Use adjacency-lists representation.
* Algorithms based on iterating over vertices adjacent to v.
e Real-world graphs tend to be sparse.

huge number of vertices,
small average vertex degree

: edge between iterate over vertices
representation space add edge

v and w? adjacent to v?

adjacency matrix V2 17 1 1%

adjacency lists E+V 1 degree(v) degree(v)

t disallows parallel edges

Homework. Design a representation that improves degree(v) bound for
checking if edge exists, and is as good as adjacency lists for all other ops

24

Adjacency-list graph representation: Java implementation

public class Graph
{

private final int V; adjacency lists

private Bag<Integer>[] adj; (using Bag data type)

public Graph(int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V]; «—
for (int v = 0; v < V; V++)
adj[v] = new Bag<Integer>();

create empty graph
with V vertices

public void addEdge(int v, int w)

{ . add edge v-w
ad-—! [v].add(w); <«——— (parallel edges and
adJ [w].add(v); self-loops allowed)
}
public Iterable<Integer> adj(int v)
{ return adj [v]: } <«——— iterator for vertices adjacent to v

25

4.1 UNDIRECTED GRAPHS

» depth-first search

Algorithms

http://algs4.cs.princeton.edu

Maze exploration

Maze graph.
 Vertex = intersection.
« Edge = passage.

oo
|
.
|

oo

E]
| |

T
ﬂﬁ]

B
I

/

intersection passage

Goal. Explore every intersection in the maze.

Maze exploration: National Building Museum

http:/ /www.smithsonianmag.com/travel/winding-history-maze-180951998/?no-ist

28

Trémaux maze exploration

Algorithm.
e Unroll a ball of string behind you.
« Mark each newly discovered intersection and passage.
e Retrace steps when no unmarked options.

29

Trémaux maze exploration

Algorithm.
e Unroll a ball of string behind you.
« Mark each newly discovered intersection and passage.
e Retrace steps when no unmarked options.

First use? Theseus entered Labyrinth to kill the monstrous Minotaur;
Ariadne instructed Theseus to use a ball of string to find his way back out.

The Cretan Labyrinth (with Minotaur) Claude Shannon (with electromechanical mouse)

http://commons.wikimedia.org/wiki/File:Minotaurus.gif http://www.corp.att.com/attlabs/reputation/timeline/16shannon.html

30

Maze exploration

31

the bored

challenge for

tion:

xplora

Maze e

Depth-first search

Goal. Systematically traverse a graph.

ldea. Mimic maze exploration. <— function-call stack acts as ball of string

DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked

vertices w adjacent to v.

Typical applications.
« Find all vertices connected to a given source vertex.
« Find a path between two vertices.

Undirected graphs: quiz 3

DFS of a tree (starting at the root) corresponds to which traversal?

A. In-order
DFS (to visit a vertex v)
B. Pre-order
Mark vertex v.
C. Post-order Recursively visit all unmarked
vertices w adjacent to v.
D. Level-order
E. I don't know.

Trick question! DFS doesn’t care about order of visiting adjacent nodes.

May correspond to pre-order or to none of the orders.

34

Depth-first search demo

To visit a vertex v: @
e Mark vertex v.

e Recursively visit all unmarked vertices adjacent to v.

tinyG. txt

U1 O NO O PR OUuUToD O O A~

graph G

35

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

tinyG. txt

U1 O NO O RPR OUuUTdo OO &

graph G

36

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

<

marked[] edgeTol[]

0 NO U1l AW N — O

(2]
— o ©

F
F
F
F
F
F
F —
F
F
F
F
F
F

N

graph G

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit 0: check 6,

1

v marked[] edgeTol]
0 Q) -
1 F -
2 F -
3 F -
4 F -
5 F -
6 F -
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

38

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

marked[] edgeTol[]

Z

T —

0 NO U1l AW N — O

(2]
— o ©

F
F
F
F
F
O O
F
F
F
F
F

N

visit 6: check O,

1

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit 6: check 4,

1

v marked[] edgeTol]
0 T =
1 F -
2 F -
3 F -
4 F -
5 F -
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

40

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit 4: check 5,

1

v marked[] edgeTol]
0 T =
1 F -
2 F -
3 F -
5O @
5 F -
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

41

Depth-first search demo

To visit a vertex v:
e Mark vertex v.

e Recursively visit all unmarked vertices adjacent to v.

visit 5: check 3,

1

v marked[] edgeTol]
0 T =
1 F -
2 F -
3 F -
4 T 6
s O ®
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

42

Depth-first search demo

To visit a vertex v:
e Mark vertex v.

e Recursively visit all unmarked vertices adjacent to v.

visit 3: check 5,

1

<

marked(]

edgeTol]

0 NO U1l AW N — O

N — O O

-n-n-n-n-n'n—|—|—|@'ﬂ"'l—|

O
6
4
0

43

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit 3: check 4,

t

v marked[] edgeTol]
0 T =
1 F -
2 F -
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

44

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit 3: done

v marked[] edgeTol]
0 T =
1 F -
2 F -
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

45

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit 5: check 4,

1

v marked[] edgeTol]
0 T =
1 F -
2 F -
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

46

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit 5: check O,

1

v marked[] edgeTol]
0 T =
1 F -
2 F -
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

47

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit 5: done

v marked[] edgeTol]
0 T =
1 F -
2 F -
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

48

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit 4: check 6,

1

v marked[] edgeTol]
0 T =
1 F -
2 F -
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

49

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit 4: check 3,

1

v marked[] edgeTol]
0 T =
1 F -
2 F -
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

50

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit 4: done

v marked[] edgeTol]
0 T =
1 F -
2 F -
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

51

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit 6: done

v marked[] edgeTol]
0 T =
1 F -
2 F -
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

52

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit O: check 5,

1

v marked[] edgeTol]
0 T =
1 F -
2 F -
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

53

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit O: check 2,

1

v marked[] edgeTol]
0 T =
1 F -
2 F -
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

54

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit 2: check O,

1

v marked[] edgeTol]
0 T =
1 F -
: @ ©
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

55

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit 2: done

v marked[] edgeTol]
0 T =
1 F -
2 T 0
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

56

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit O: check 1,

4

v marked[] edgeTol]
0 T =
1 F -
2 T 0
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F =
11 F -
12 F -

57

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

visit 1: check O,

1

<

marked[] edgeTol[]

0 NO U1l AW N — O

N — O O

—
I

G
=

M m m m 7 omh 4 4 44 4 A
O b~ OO U

58

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

@

visit 1: done

<

marked(]

edgeTol]

0 NO U1l AW N — O

N — O O

—

m M mmm 4 4 444 4 -

o A OO LT O O

59

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

@

visit 0: done

<

marked(]

edgeTol]

0 NO U1l AW N — O

N — O O

—

m M mmm 4 4 444 4 -

o A OO LT O O

60

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

vertices reachable from 0

<

marked(]

edgeTol]

0 NO U1l AW N — O

N — O O

—

m M mmm 4 4 444 4 -

o A OO LT O O

61

Depth-first search demo

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

vertices reachable from 0

<

marked(]

edgeTol]

0 NO U1l AW N — O

N — O O

—

m M mmm 4 4 444 4 -

o A OO LT O O

62

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

e Create a Graph object.
« Pass the Graph to a graph-processing routine.
e Query the graph-processing routine for information.

public class Paths

Paths(Graph G, int s) find paths in G from source s

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

Paths paths = new Paths(G, s);
for (int v =0; v < G.VO; v++)
if (paths.haéPathTo(v)) print all vertices
StdOut.printin(v); : connected to s

63

Modularity

As usual, client doesn’t care about implementation details, including data

structures used

Client code
API

Encapsulates
DFS algorithm

A

Data type > Graph Paths <

(adjacency list) marked[] edgeTol[]

N

Data structures

64

Depth-first search: data structures

To visit a vertex v:
* Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v.

Data structures.
« Boolean array marked[] to mark vertices.
 Integer array edgeTo[] to keep track of paths.
(edgeTo[w] == v) means that edge v-w taken to discover vertex w
o Function-call stack for recursion.

Depth-first search: Java implementation

public class DepthFirstPaths
{

marked[v] = true
if vconnected to s

private boolean[] marked;
private int[] edgeTo;
private int s;

A A

edgeTo[v] = previous
vertex on path from s to v

public DepthFirstPaths(Graph G, int s)
{

initialize data structures

A

find vertices connected to s

A

dfs(G,);
}

recursive DFS does the work

AN

private void dfs(Graph G, int v)
{
marked[v] = true;
for (Aint w : G.adj(v))
it (Imarked[w])
{
edgeTo[w] = v;
dfs(G, w);

Depth-first search: properties

Proposition. DFS marks all vertices connected to s in time proportional to

the sum of their degrees (plus time to initialize the marked[] array).

Pf. [correctness]
e If w marked, then w connected to s (why?)
e |f w connected to s, then w marked.
(if w unmarked, then consider last edge
on a path from s to w that goes from a
marked vertex to an unmarked one).

Pf. [running time]
Each vertex connected to s is visited once.

source set of marked
vertices

no such edge

set of <« can exist

unmarked

vertices “a_

67

Depth-first search: properties

Proposition. After DFS, can check if vertex vis connected to s in constant

time and can find v—s path (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at vertex s.

public boolean hasPathTo(int v)
{ return marked[v]; }

public Iterable<Integer> pathTo(int v) @ 9 edgeTo[]
{
if ('hasPathTo(v)) return null; G
Stack<Integer> path = new Stack<Integer>();
for (int x = v; x !=s; x = edgeTo[x]) e 9 @
path.push(x); s
path.push(s); " (\§
return path;

ui h W NP
w W N ON

4.1 UNDIRECTED GRAPHS

Algorithms

» breadth-first search

http://algs4.cs.princeton.edu

Breadth-first search

Repeat until queue is empty:

 Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

BFS (from source vertex s)

Enqueue s, mark s as visited.
While queue is not empty:
- dequeue v
- enqueue each of v's unmarked neighbors,

and mark them.

70

Breadth-first search demo

Repeat until queue is empty: @
« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

() (2)

T

graph G

tinyCG. txt

C;f
ﬁ%

O W WORENNOO
NV R BRERDNWPRU

71

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

T

graph G

tinyCG. txt

;f
S%

O W WORENNOO
NV R BRERDNWPRU

72

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

() (2)

T

add 0 to queue

queue

\Y

edgeTo[] distTo[]

ol DN W N — O

73

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.
 Add to queue all unmarked vertices adjacent to vand mark them.

a @ queue v edgeTo[] distTo[]

ol DN W N — O
I
I

T

dequeue 0

74

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

o 2 queue v edgeTo[] distTol[]

ol DN W N — O
I
I

T

dequeue 0

75

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.
 Add to queue all unmarked vertices adjacent to vand mark them.

a : queue v edgeTo[] distTo[]

o O

ol DN W N — O
I
I

T

dequeue 0

76

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

dequeue 0

queue

\Y

edgeTo[] distTo[]

ol DN W N — O

o O

77

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

a : queue v edgeTo[] distTo[]

o O

ol DN W N — O
I
I

0 done

78

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

o T

dequeue 2

queue

\Y

edgeTo[] distTo[]

ol DN W N — O

o O

79

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

o T

dequeue 2

queue

\Y

edgeTo[] distTo[]

ol DN W N — O

o O

80

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

o T

dequeue 2

queue

\Y

edgeTo[] distTo[]

ol DN W N — O

o O

81

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]

0

N O O

ol DN W N — O

dequeue 2

82

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]
0 = 0
1 0 1
@ 2 0 1
3 2 2
3 4 2 2
5 0 1

o T 5

dequeue 2

83

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

a queue v edgeTo[] distTol[]

0 - 0
] 0]

@ 4 2 0]
3 2 2

3 4 2 2

5 0]

2 done

84

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]

0 - 0
] 0]

G 4 2 0]
3 2 2

3 4 2 2

5 0]

dequeue 1

85

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]
0 = 0
1 0 1
2 0 1
3 2 2
4 4 2 2
5 0 1

dequeue 1

86

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

dequeue 1

O

queue

\Y

edgeTo[] distTo[]

ol DN W N — O

SO N N O O

87

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]
0 = 0
1 0 1
‘l.’ 2 0 1
3 2 2
4 4 2 2
5 0 1

1 done

88

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]
0 = 0
1 0 1
2 0 1
3 2 2
4 4 2 2
5 0 1

dequeue 5

89

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

dequeue 5

O

queue

\Y

edgeTo[] distTo[]

ol DN W N — O

SO N N O O

90

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

dequeue 5

—

queue

\Y

edgeTo[] distTo[]

ol DN W N — O

SO N N O O

91

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]
0 = 0
1 0 1
2 0 1
3 2 2
4 2 2
5 0 1

o T/)

5 done

92

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]
0 = 0
1 0 1
2 0 1
3 2 2
4 2 2
5 0 1

o— 4

dequeue 3

93

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

dequeue 3

—— 5

queue

\Y

edgeTo[] distTo[]

ol DN W N — O

SO N N O O

94

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

dequeue 3

queue

\Y

edgeTo[] distTo[]

ol DN W N — O

SO N N O O

95

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

dequeue 3

queue

\Y

edgeTo[] distTo[]

ol DN W N — O

SO N N O O

96

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]
0 - 0
] 0 |
2 0 1
3 2 2
4 2 2
o RN
4

3 done

97

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]
0 - 0
] 0 |
2 0 1
3 2 2
4 2 2
5 0 1
4

dequeue 4

98

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

dequeue 4

queue

\Y

edgeTo[] distTo[]

ol DN W N — O

SO N N O O

99

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

dequeue 4

queue

\Y

edgeTo[] distTo[]

ol DN W N — O

SO N N O O

100

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

queue v edgeTo[] distTol[]
0 = 0
1 0 1
2 0 1
3 2 2
4 2 2
5 0 1

4 done

101

Breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

done

\"

edgeTo[] distTol]

ol DN W N — O

SO N N O O

102

Breadth-first search demo

Repeat until queue is empty:

 Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

done

\"

edgeTo[] distTol]

ol DN W N — O

SO N N O O

103

Breadth-first search demo

Repeat until queue is empty:
 Remove vertex v from queue.

 Add to queue all unmarked vertices adjacent to vand mark them.

e v edgeTo[] distTo[]

0 - 0
1 0 1
2 0 1
3 2 2
4 2 2
@ 5 0 1

) O

Q. Draw another possible BFS tree of the same graph (also starting from 0)
A. Only one other BFS tree possible: replace 2—3 edge with 5—3 edge

104

Breadth-first search: Java implementation

public class BreadthFirstPaths
{
private boolean[] marked;
private int[] edgeTo;
private int[] distTo;

private void bfs(Graph G, int s) {
Queue<Integer> g = new Queue<Integer>();
g.enqueue(s);
marked[s] = true;
distTo[s] = O;

while (!'qg.isEmpty()) {
int v = q.dequeue();
for (int w : G.adj(v)) {
if (Imarked[w]) {
q.enqueue(w) ;
marked[w] = true;
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;

initialize FIFO queue of
vertices to explore

found new vertex w
via edge v-w

105

Breadth-first search properties

Q. In which order does BFS examine vertices?

A. Increasing distance (number of edges) from s.

N\

queue always consists of >0 vertices of distance k from s,
followed by = 0 vertices of distance k+1

Proposition. In any connected graph G, BFS computes shortest paths

from s to all other vertices in time proportional to E + V.

graph G dist =0 dist=1 dist = 2

106

Breadth-first search application: routing

Fewest number of hops in a communication network.

ORC 0.
fesn ko

L8L)
uor:er*r’ Q - R ’
ol ¥ UTAH 1
DXEROX GwWC ANL - 0
: - TYMSHARE e ?—~ ’. HARVARD
DO%/ —~'WPAFS
ILLINOIS A usmn

SCOTT .ELVO'R O
DCEC " m) N‘s
SDAC A

ﬁIT'RE '

H“Ml

GUNTER

e SATELLITE CIRCUIT
O P
O 7w
& PLURIBUS mP

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS)

NAMES SHOWN ARE 1MP NAMCS, NOT (NECESSARILY) HOST NAMES

ARPANET, July 1977

107

Breadth-first search application: Kevin Bacon numbers

ann The Oracle of Bacon

L lcllell<][+)@)€ s

www Ofacieofbaton org /o

Bis meviel nki’game « & Aritname « Kevis « Baco

The Curtis | woe of Mucic COS 126 FOR ACM Awands Wang

THE ORACLE

OF BACON

Help
Credits
How it Works

Contact Us L . ¢ U
Other games »

Buzz Mauro

Tatana Ramirez

Interior de un silencio, E1 (2005) |

Andres Suarez
Carlita's Secret (2004) |
Paula Lemes (I)

Frost/Nixon (2008)

Kevin Bacon

http:/ /oracleofbacon.org

SI8 MoCachy | Memepage Stocks COSI26FOT TPM RSS(1742) v

I yo seai300 xS
=
o=
=
¢

Endless Games board game

Ll Y
Je

Uma Thurman
acted in
Be Cool (2005) ’
with
Scott Adsit
who acted in
The Informant! (2009) >
with
Matt Damon

Q Ll

.
Lookup

SixDegrees iPhone App

108

Kevin Bacon graph

e Include one vertex for each performer and one for each movie.
« Connect a movie to all performers that appear in that movie.

« Compute shortest path from s = Kevin Bacon.

1 Patrick Dial M Grace
— Caligola Allen for Murder Kelly
\ / /
Glenn The Stepford !
Close Wives To Catchf— — nwh
a Thief oon
John
Gielgud / \
Portrait
of a Lady - | The Eagle |
Nicole Has Landed

I , Kidman / \

— Murder on the P~ AN

Orient Express 1 \ /
Cold Donald
/ \ v . Sutherland Kathleen Joe Versus
ountain ; - -
Quinlan the Volcano|
VA
\ /
An American John Animal
Hamlet | Haunting Belushi House performer
7 S Apollo 13 vertex

/l Vernon / \ \ | ~

Dobtcheff [he
Woodsman
7 TN /
- N N Bi11
movie | : \ Paxton
vertex s] Wild L
| d Things The River - AN /
Jude 7T =1 wild [e D
e Da
\ / \ | N\ Vinci Code
" Meryl
— Enigma Streep Serretta
Kate Wilson

7
Winslet . R S Yves
Titanic
a1 1 7 N~ Shane
Eternal Sunshine Zaza

of the Spotless fmm
Mind
T7 1T 1\

109

4.1 UNDIRECTED GRAPHS

Algorithms

» challenges

http://algs4.cs.princeton.edu

Graph-processing challenge 1

Problem. Is a graph bipartite?

A DA NNRLROOOO
I

SVl AW WO LT N R

A DN DNPRR O OO O
I

O U1 A W WOoUuI N

Solution:
modify DFS so that each node is colored opposite of its parent
while iterating over adjacent nodes check color
if same color as current node: not bipartite!
if graph not connected: check if each component is bipartite

111

Graph-processing challenge 2

Problem. Find a cycle in a graph (if one exists).

Simple DFS-based solution (see textbook).

0-5-4-6-0

-b-bNNII—\OOOO
AUl AW WO UT N R

112

Graph-processing challenge 3

Problem. Find a cycle that uses every edge exactly once (if one exists).

Y " 4 -
)
- 4 AT
\ ! - .
s A o "
A : -
A - A_\"‘ ' oy Ay
Fin : }‘\ = o
. (N ‘ \ I/ "1 .
v 1 -2 @ . .
2 W . | " e S
o4 - e
. LSy R v u . '
Y v ' Y '
o P LA " ‘) . §
01 s WA s L \ 0% - S
- : . Y -
O o f &7 5 ’ ¥ .y Lo | -
! v 3 O ; 3 . ! "
v ») ./n 05 Y 4 A e ALY
. Yy "y 4 . - ' A Soag B8 o N O
o TN ¥ Y Y S | ’
A . - 2.0 : el e /
—— 3 -’ : 1 iy - v
i T Y - . - i i —— 4
21 A T A —— ———rTYt) /3
' g P = eyt TN ut ; LV R
" Fewee i wne + /e ‘," : s
L r v v {- -1 !) . .‘».
= -
. y ¥ A LR et
" . . S
> pre il _rr
' % e /3

0-1-2-3-4-2-0-6-4-5-0

Bridges of Koenigsberg problem. Famously solved by Euler in 1736.

| B |
St A b WDNOUUVINERE

A D WNNPREOOOO
1

Cycle exists if and only if graph connected & each vertex has even degree

Finding Euler cycle (if it exists): another easy application of DFS.

Graph-processing challenge 4

Problem. Is there a cycle that contains every vertex exactly once?

“Hamiltonian circuit” problem.

Famously NP-complete.

0-5-3-4-6-2-1-0

[T
oOuviun AOONO ULIIN R

A D W WDNREREOOOO
|

114

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

0
“Graph isomorphism” problem. o e e
. . 5
Complexity is famously unresolved.
Not known to be solvable in polynomial time
nor known to be NP-complete. e

A DN W WOOOO
1
S Ul O UTN R

Ui W NP PR O OO
[
OO D ul O U DN

0<=4, 1<3, 2<2, 3<6, 4<5, 5<0, 6«1

115

Graph-processing challenge 6

Problem. Can you draw a graph in the plane with no crossing edges?

\

try it yourself at http://planarity.net

Linear-time but complicated DFS-based algorithm
(by Bob Tarjan)

A DA WWOOOO
I
S Ul O UTN R

116

Graph traversal summary

BFS and DFS enables efficient solution of many (but not all) graph problems.

>
s-t path EER—
(@) =)
o~ é =
shortest s-t path v E+V é S E
=)
gz
cycle v v E+V S 85
£ o &
ST
S c o
Euler cycle v E+V BE= Y
E o ©
2 wul
Hamilton cycle 91.657V <
< o ©
S
i i 2 0 E
bipartiteness (odd cycle) v v E+V = g §
£ 5 9
connected components v v E+V S 3 o
x 2 0O
bz
biconnected components (4 E+V
planarity v E+V

graph isomorphism 9cvVilogV

4.1 UNDIRECTED GRAPHS

Algorithms

http://algs4.cs.princeton.edu } f/lpped /eCfUI’e eXperimenf

Next 4 lectures will be flipped

No class Wednesday 3/23
Before Monday 3/28:

Watch directed graphs and minimum spanning trees lectures
Guna will lead flipped session (usual time and place on 3/28)

No class Wednesday 3/30
Before Monday 4/4:

Watch shortest paths and maximum flow lectures
Arvind will lead flipped session (usual time and place on 4/4)

Regular lectures will resume Wednesday 4/6

119

