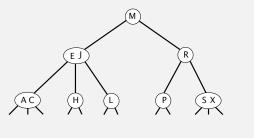


2-3 tree demo

Search.

- · Compare search key against keys in node.
- Find interval containing search key.
- · Follow associated link (recursively).

search for H

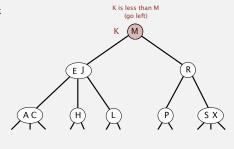


2-3 tree demo: insertion

Insert into a 2-node at bottom.

- · Search for key, as usual.
- Replace 2-node with 3-node.

insert K

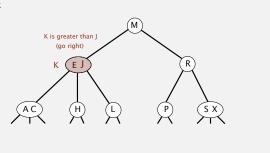


2-3 tree demo: insertion

Insert into a 2-node at bottom.

- · Search for key, as usual.
- Replace 2-node with 3-node.

insert K

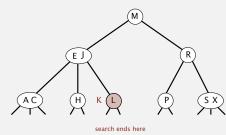


2-3 tree demo: insertion

Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.

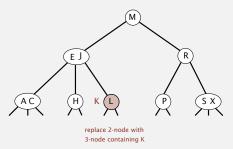
insert K



Insert into a 2-node at bottom.

- · Search for key, as usual.
- Replace 2-node with 3-node.

insert K

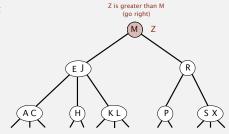


2-3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z

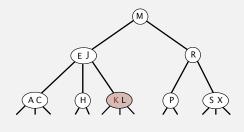


2-3 tree demo: insertion

Insert into a 2-node at bottom.

- · Search for key, as usual.
- Replace 2-node with 3-node.

insert K

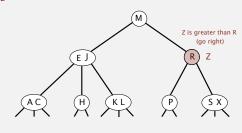


2-3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

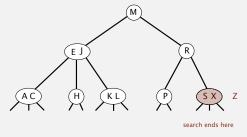
insert Z



Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z

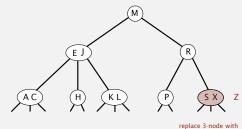


2-3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z



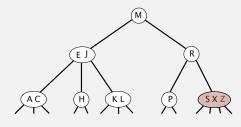
replace 3-node with temporary 4-node containing Z

2-3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z

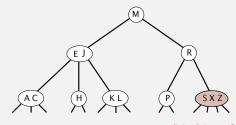


2-3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z

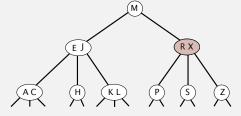


split 4-node into two 2-nodes (pass middle key to parent)

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z

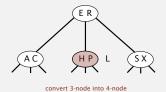


2-3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- · Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

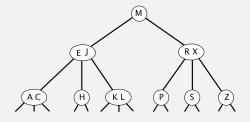


2-3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z

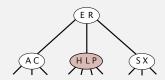


2-3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- · Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

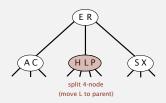
insert L



Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- · Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

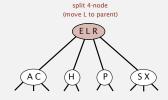


2-3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- · Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

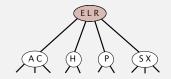


2-3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- · Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L



2-3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- · Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

E R R AC H P SX

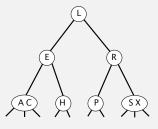
height of tree increases by 1

insert L

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L



2-3 tree: insertion

Insertion into a 2-node at bottom.

· Add new key to 2-node to create a 3-node.

Insertion into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

- · Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

Practice: draw the 2-3 tree construction for SEARCH

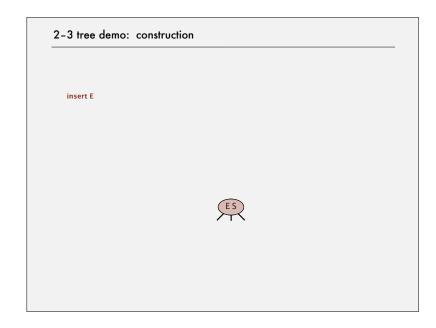
26

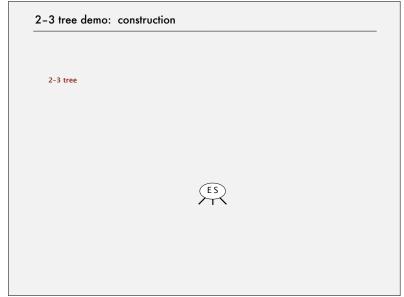
2-3 tree demo: construction

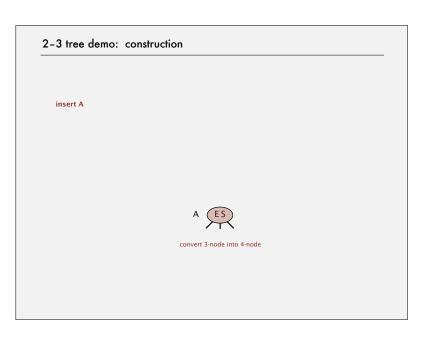
insert S

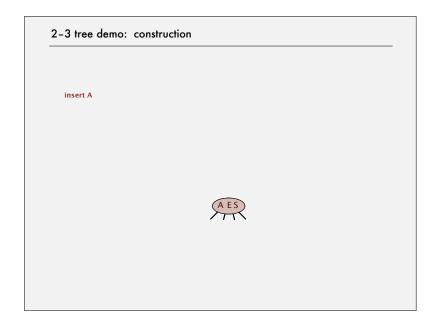
2-3 tree demo: construction

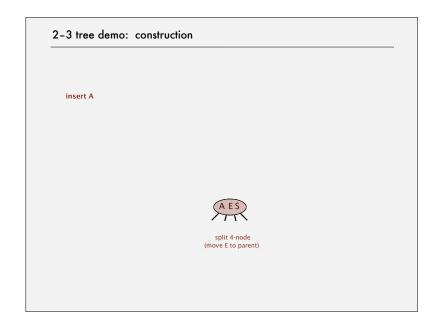
2-3 tree

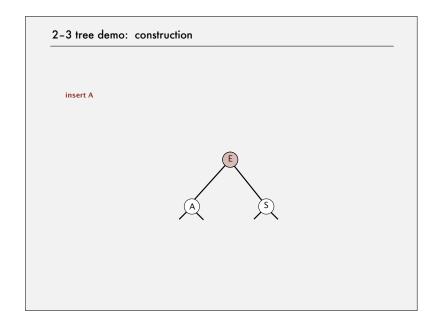


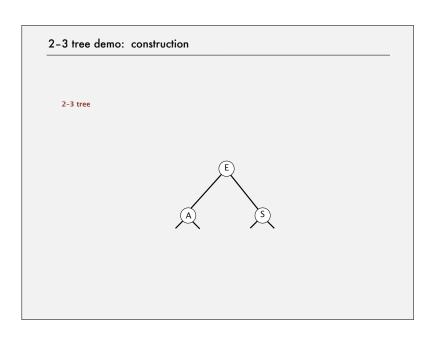


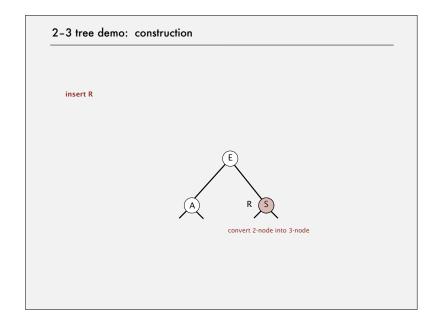


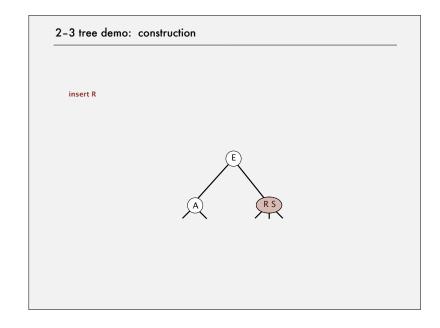


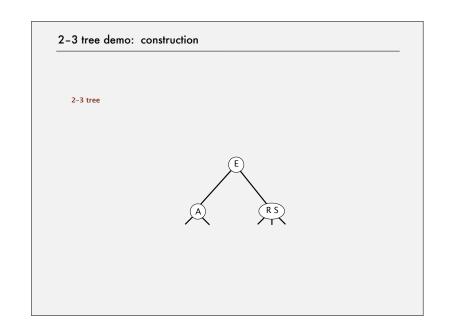


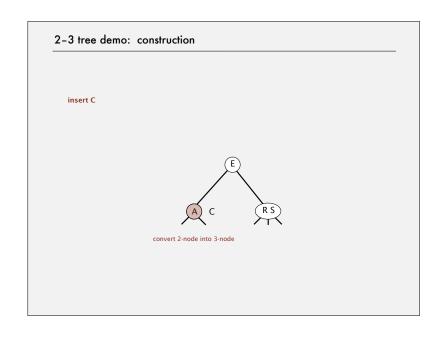




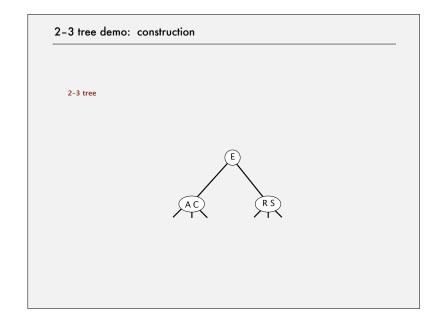


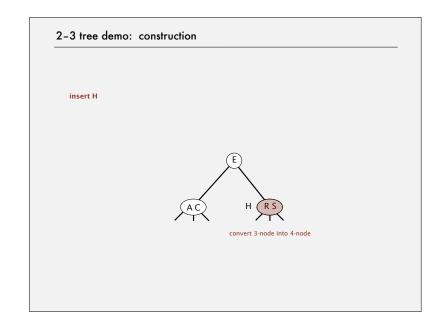


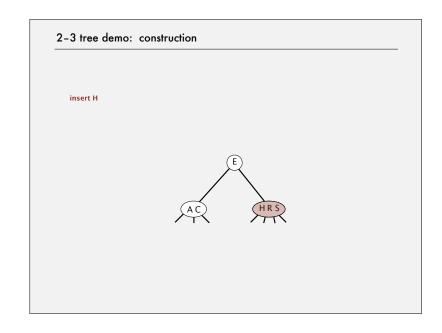


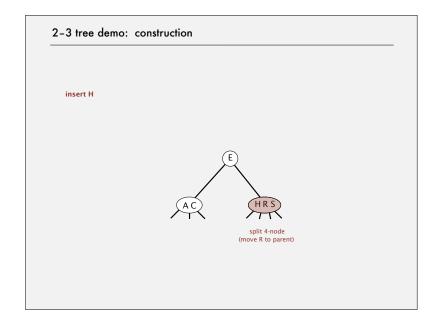


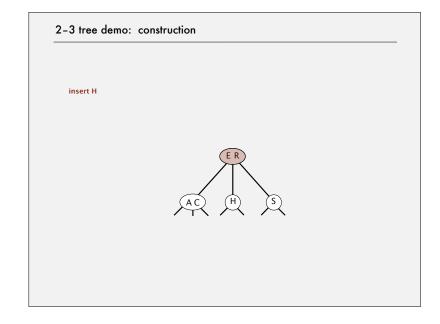


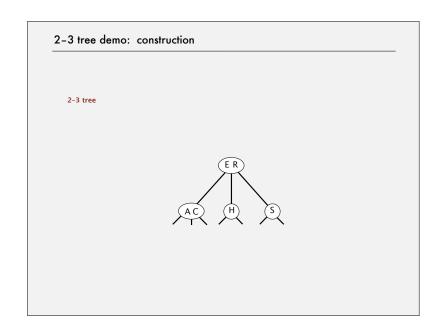


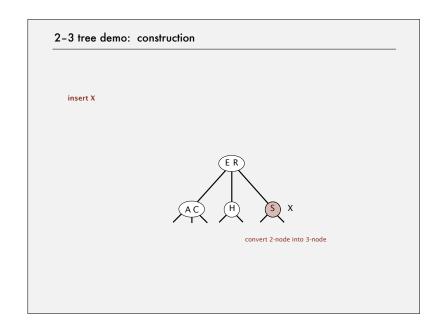


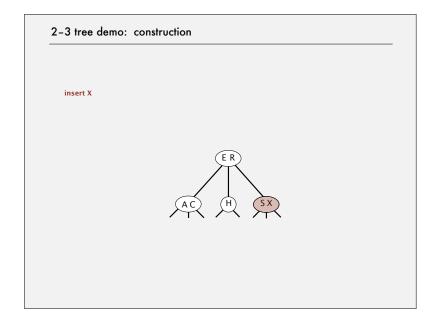


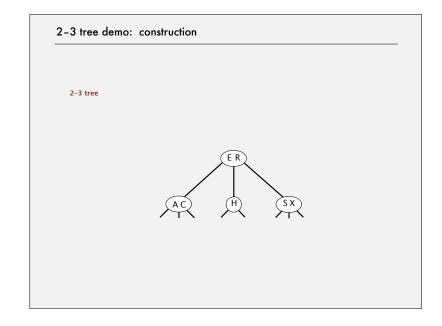


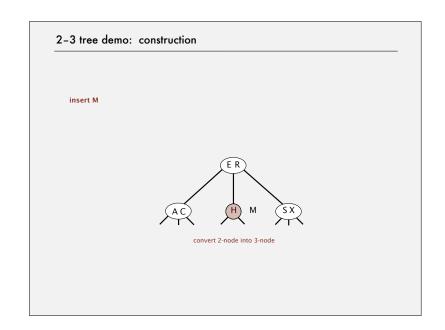


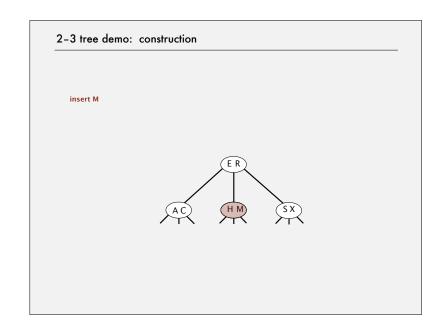


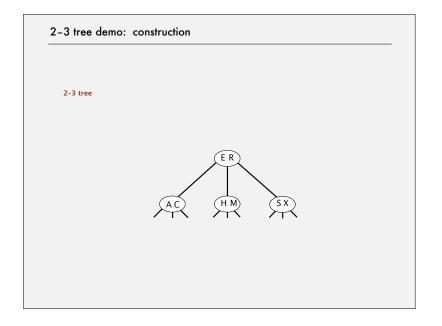


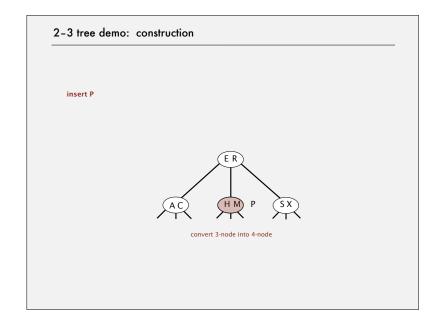


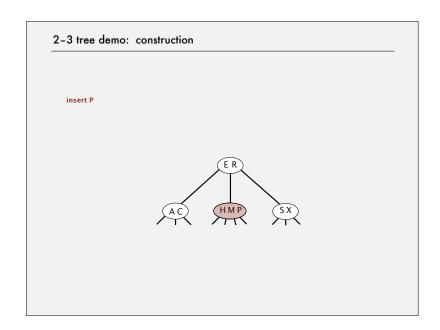


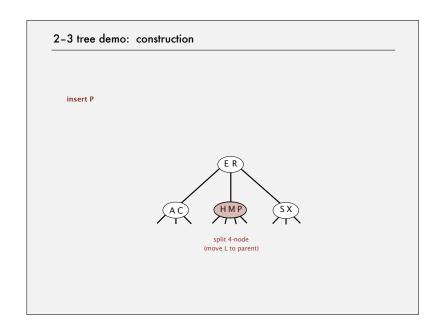


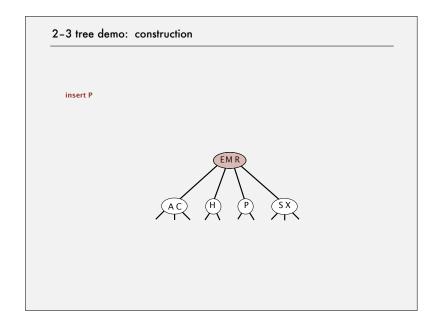


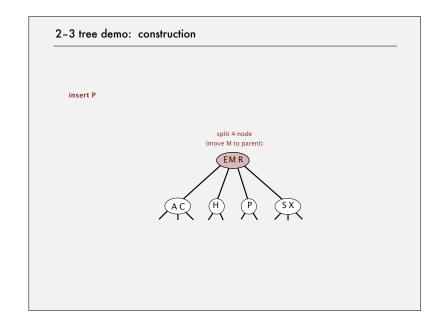


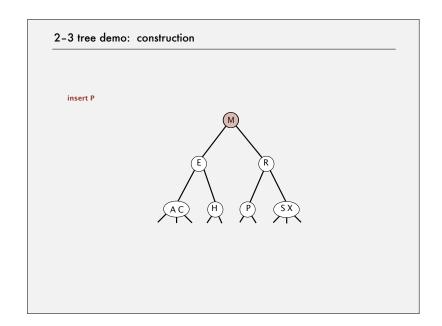


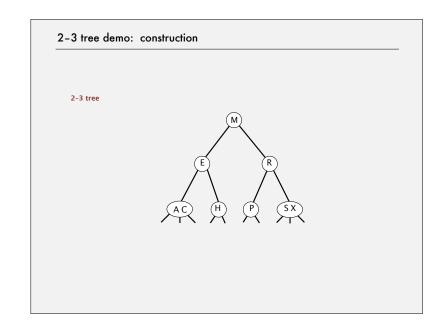


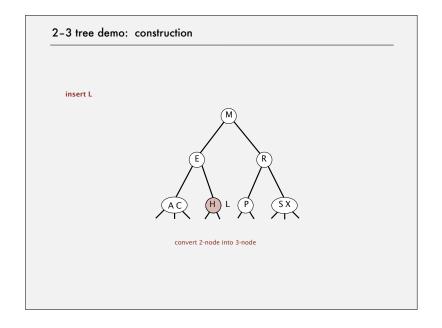


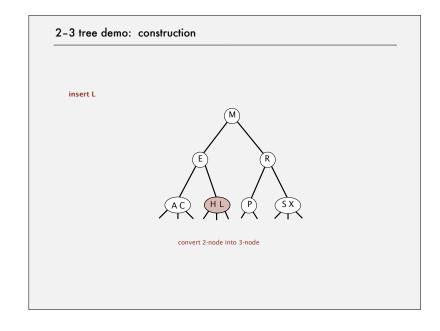


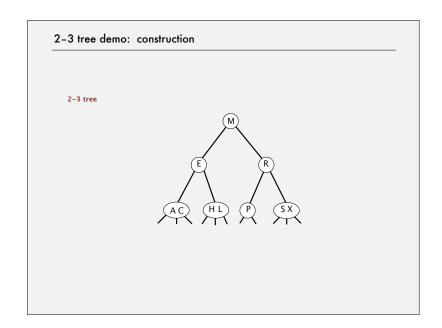


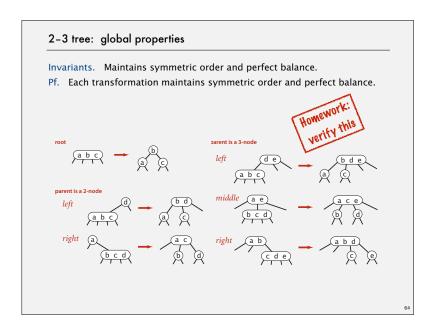






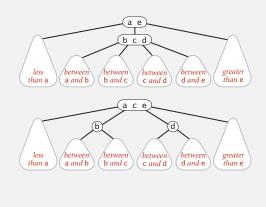






2-3 tree: performance

Splitting a 4-node is a local transformation: constant number of operations.



Balanced search trees: quiz 1

What is the height of a 2–3 tree with N keys in the worst case?

- A. $\sim \log_3 N$
- B. $\sim \log_2 N$
- C. $\sim 2 \log_2 N$
- **D.** $\sim N$
- E. I don't know.

66

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case: lg N. [all 2-nodes]
- Best case: log₃ N ≈ .631 lg N. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Bottom line. Guaranteed logarithmic performance for search and insert.

ST implementations: summary

implementation	guarantee			average case			ordered	key
implementation	search	insert	delete	search hit	insert	delete	ops?	interface
sequential search (unordered list)	N	N	N	N	N	N		equals()
binary search (ordered array)	log N	N	N	log N	N	N	~	compareTo()
BST	N	N	N	log N	log N	\sqrt{N}	V	compareTo()
2-3 tree	log N	log N	log N	log N	$\log N$	log N	~	compareTo()
	*			onstant is implement		7		

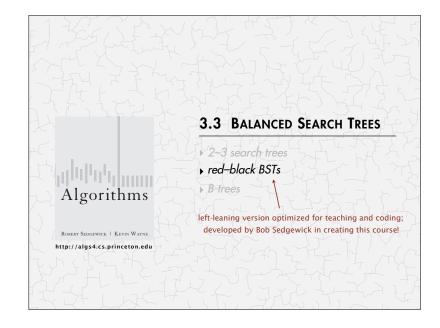
2-3 tree: implementation?

Direct implementation is complicated, because:

- · Maintaining multiple node types is cumbersome.
- · Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- · Large number of cases for splitting.
 - " Beautiful algorithms are not always the most useful."
 - Donald Knuth

Bottom line. Could do it, but there's a better way.

69



How to implement 2-3 trees with binary trees?

Challenge. How to represent a 3 node?

Approach 1. Regular BST.

- No way to tell a 3-node from a 2-node.
- Cannot map from BST back to 2-3 tree.

Approach 2. Regular BST with red "glue" nodes.

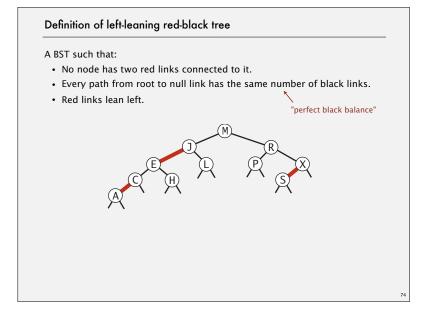
- · Wastes space, wasted link.
- · Code probably messy.

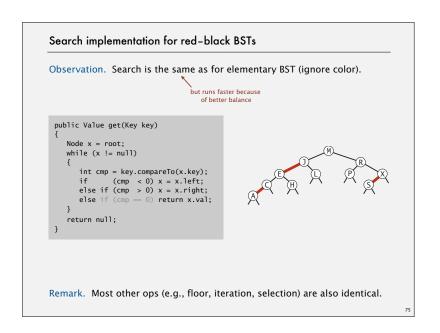
Approach 3. Regular BST with red "glue" links.

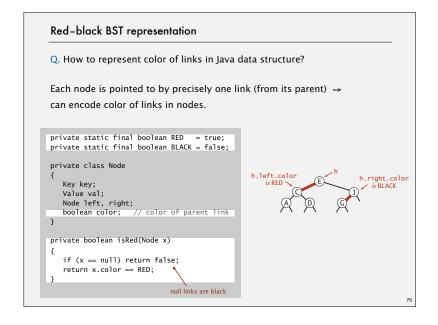
- · Widely used in practice.
- · Arbitrary restriction: red links lean left.

Left-leaning red – black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007) 1. Represent 2–3 tree as a BST. 2. Use "internal" left-leaning links as "glue" for 3–nodes. 3-node less between than b less between than b less black links connect 2-nodes and 3-nodes red links "glue" less black links connect 2-nodes and 3-nodes red links "glue" corresponding red-black BST

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees Key property. 1-1 correspondence between 2-3 and LLRB. red-black tree horizontal red links A C H D P S X 2-3 tree

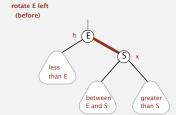






Elementary red-black BST operations

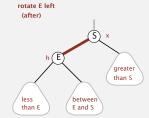
Left rotation. Orient a (temporarily) right-leaning red link to lean left.



Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.



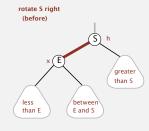
private Node rotateLeft(Node h)
{
 assert isRed(h.right);
 Node x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 return x;
}

Invariants. Maintains symmetric order and perfect black balance.

78

Elementary red-black BST operations

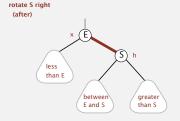
Right rotation. Orient a left-leaning red link to (temporarily) lean right.



Invariants. Maintains symmetric order and perfect black balance.

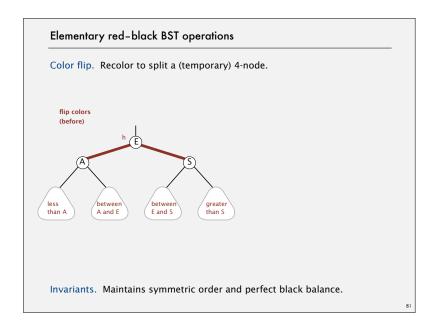
Elementary red-black BST operations

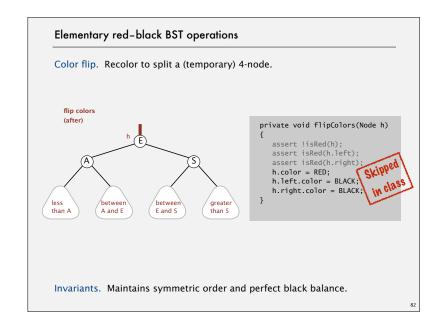
Right rotation. Orient a left-leaning red link to (temporarily) lean right.

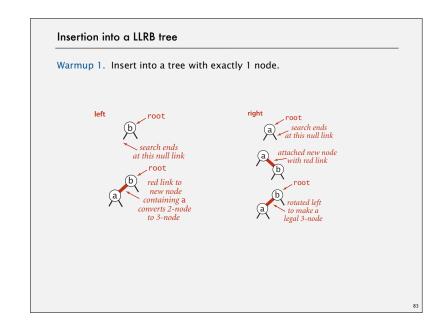


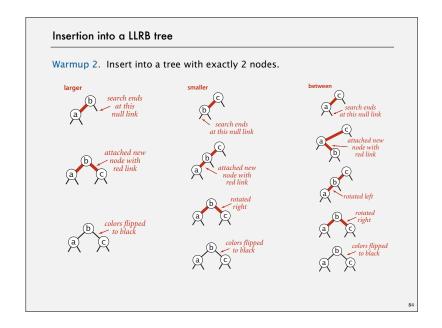
private Node rotateRight(Node h)
{
 assert isRed(h.left);
 Node x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 return x;
}

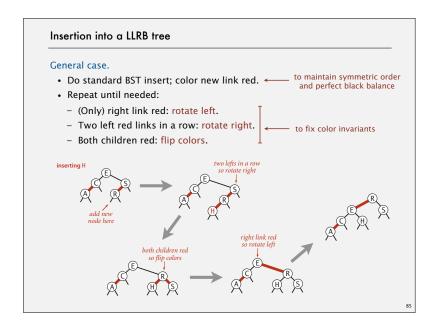
Invariants. Maintains symmetric order and perfect black balance.

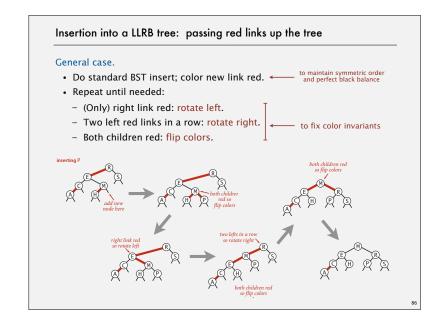


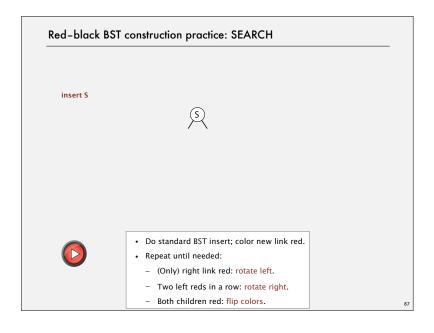


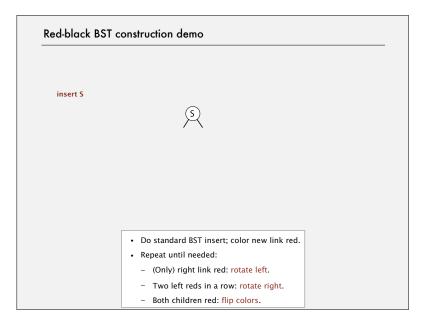


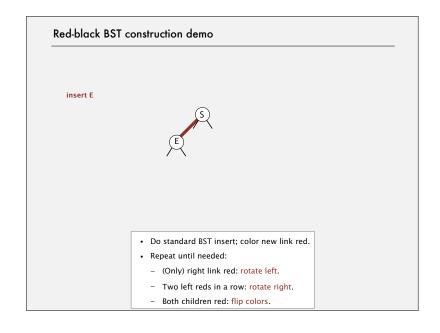


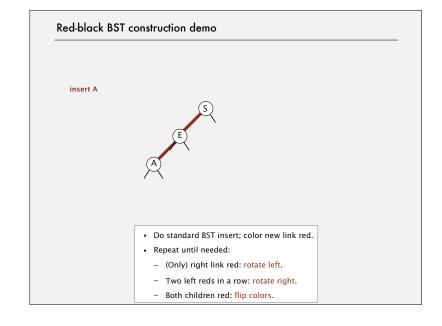


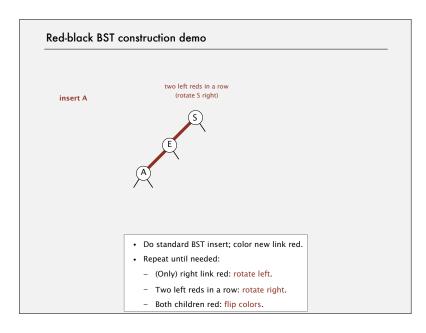


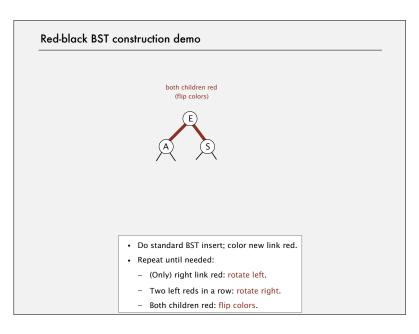












Red-black BST construction demo

both children red

- · Do standard BST insert; color new link red.
- · Repeat until needed:
- (Only) right link red: rotate left.
- Two left reds in a row: rotate right.
- Both children red: flip colors.

Red-black BST construction demo

red-black BST

- · Do standard BST insert; color new link red.
- · Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.

Red-black BST construction demo

red-black BST

- · Do standard BST insert; color new link red.
- · Repeat until needed:
 - (Only) right link red: rotate left.
- Two left reds in a row: rotate right.
- Both children red: flip colors.

Red-black BST construction demo

insert R

- · Do standard BST insert; color new link red.
- · Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.

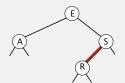
Red-black BST construction demo

red-black BST

- · Do standard BST insert; color new link red.
- · Repeat until needed:
- (Only) right link red: rotate left.
- Two left reds in a row: rotate right.
- Both children red: flip colors.

Red-black BST construction demo

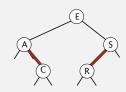
red-black BST



- · Do standard BST insert; color new link red.
- · Repeat until needed:
- (Only) right link red: rotate left.
- Two left reds in a row: rotate right.
- Both children red: flip colors.

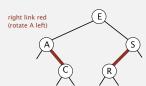
Red-black BST construction demo

insert C

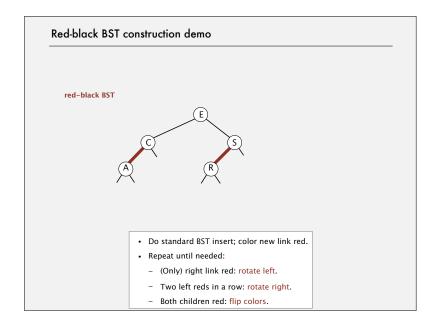


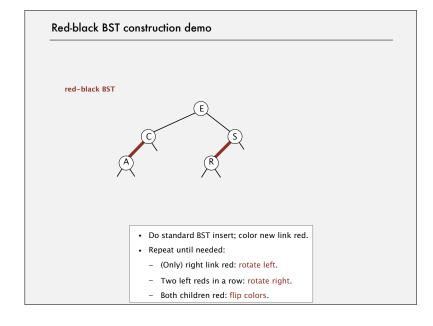
- · Do standard BST insert; color new link red.
- · Repeat until needed:
 - (Only) right link red: rotate left.
- Two left reds in a row: rotate right.
- Both children red: flip colors.

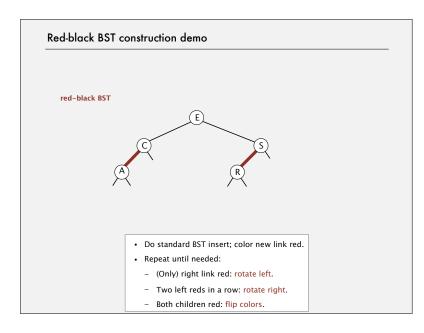
Red-black BST construction demo

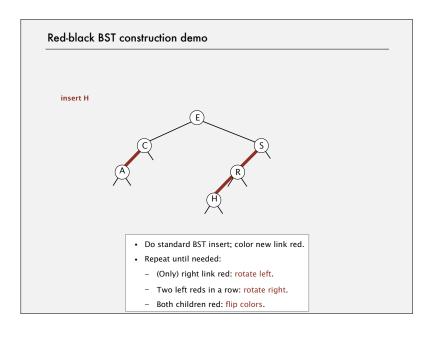


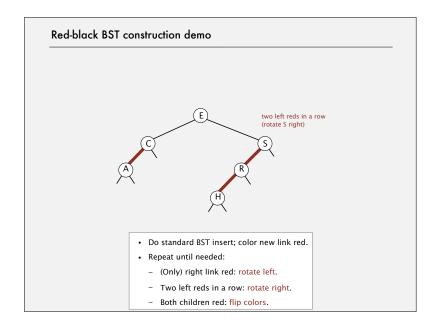
- · Do standard BST insert; color new link red.
- · Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.

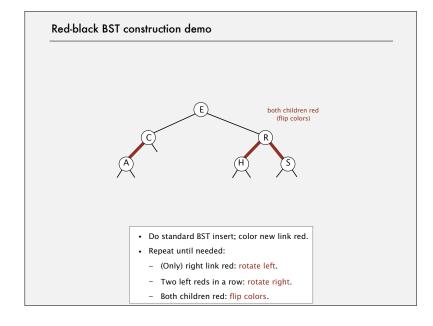


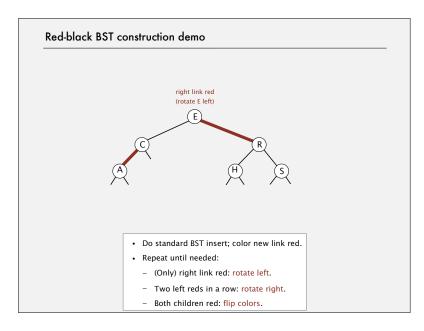


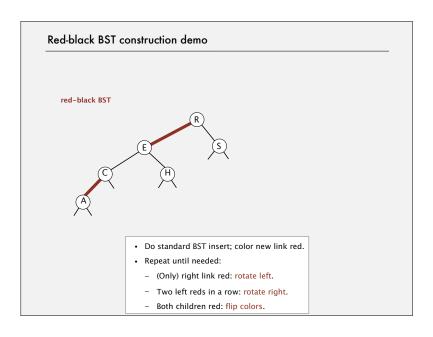


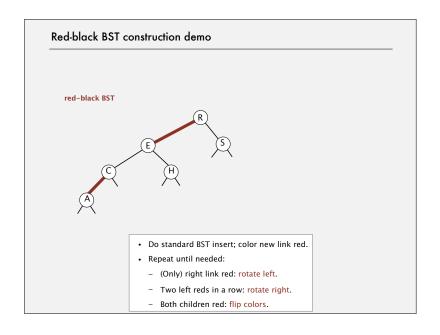


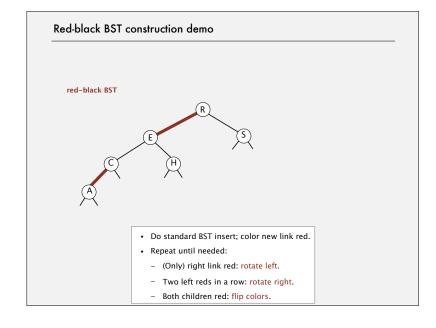


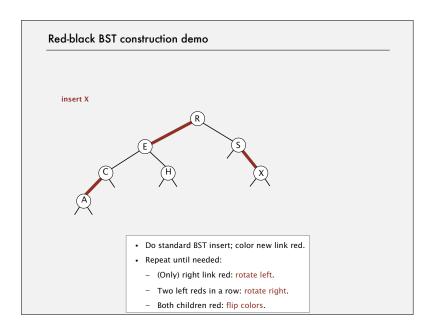


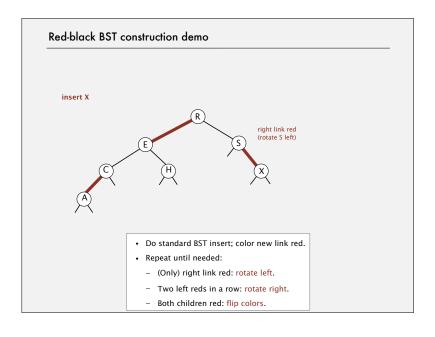


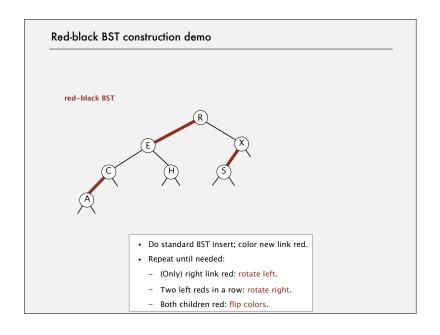


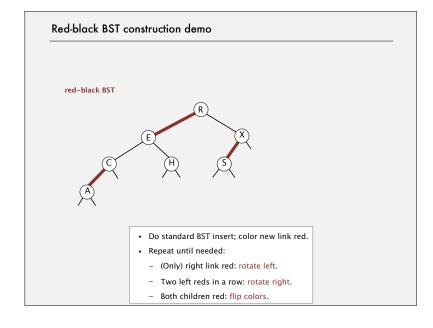


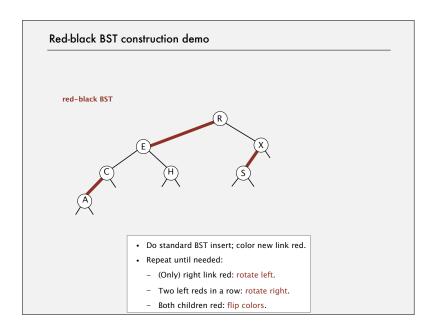


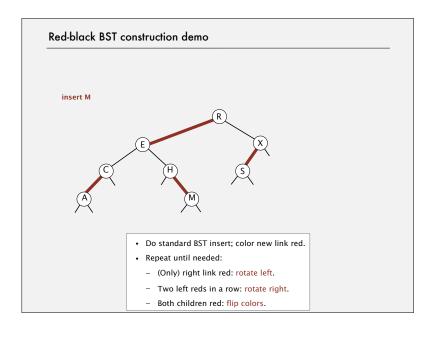


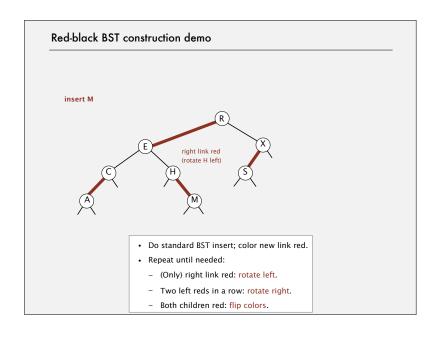


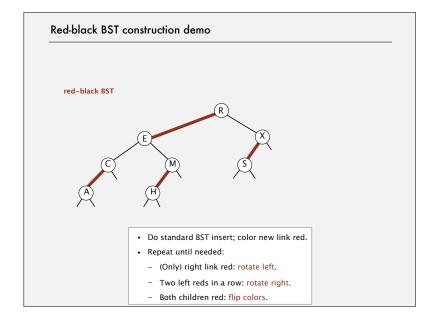


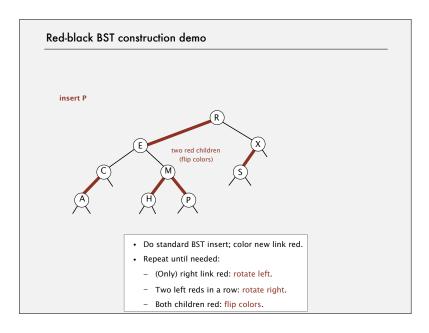


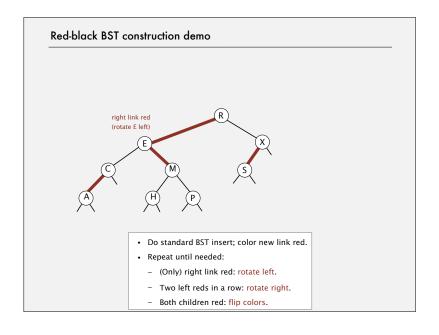


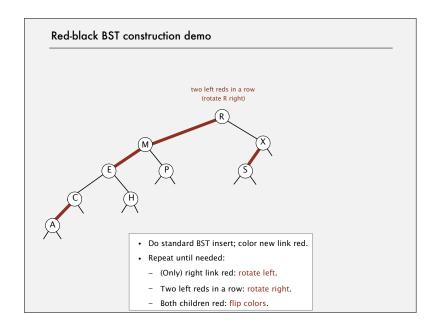


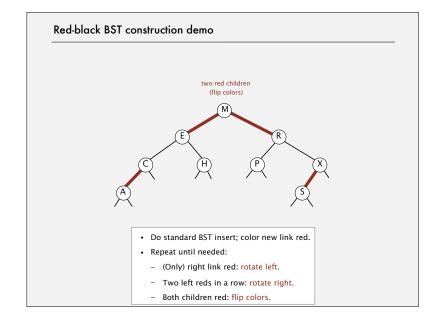


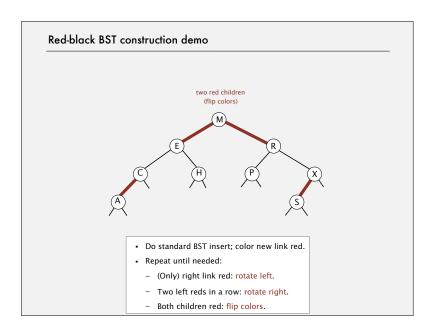


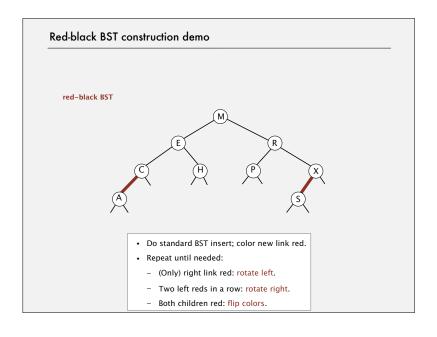


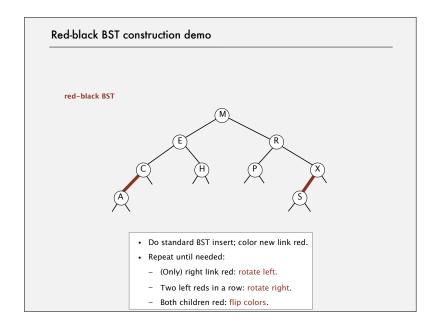


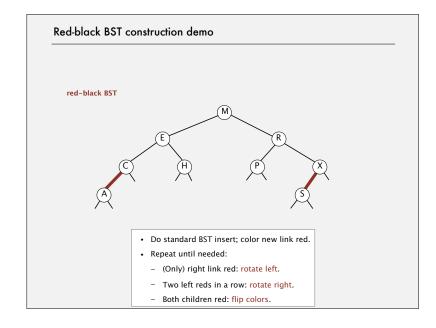


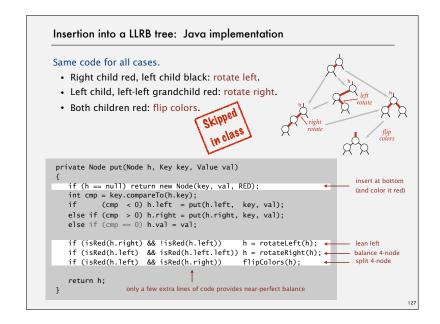


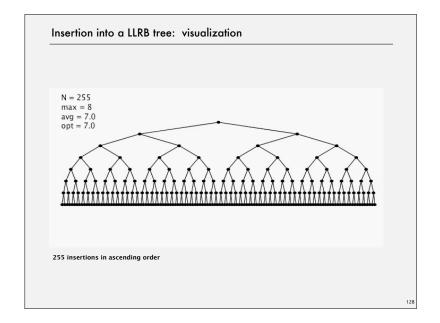


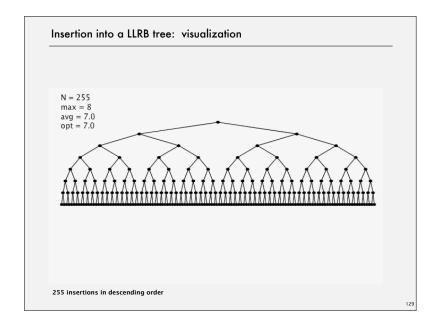


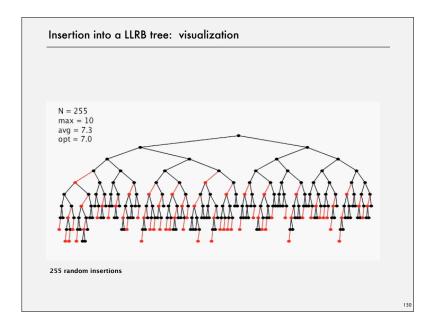












Balanced search trees: quiz 2

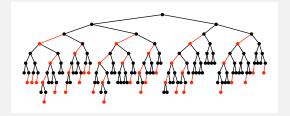
What is the height of a LLRB tree with N keys in the worst case?

- A. $\sim \log_3 N$
- **B.** $\sim \log_2 N$
- C. $\sim 2 \log_2 N$
- D. ~ N
- E. I don't know.

Balance in LLRB trees

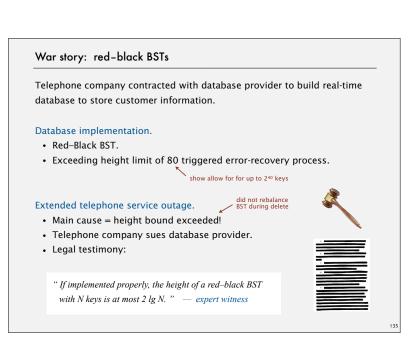
Proposition. Height of tree is $\leq 2 \lg N$ in the worst case. Pf

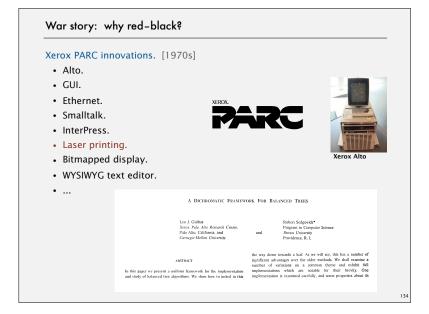
- Black height = height of corresponding 2-3 tree $\leq \lg N$.
- · Never two red links in-a-row.

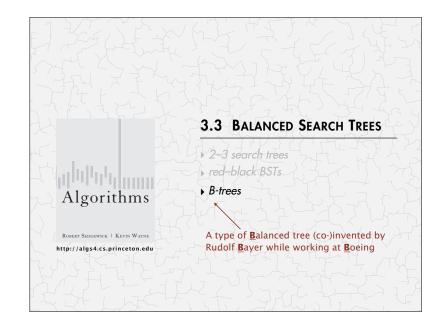


Property. Height of tree is $\sim 1.0 \lg N$ in typical applications.

implementation	guarantee			average case			ordered	key
	search	insert	delete	search hit	insert	delete	ops?	interface
sequential search (unordered list)	N	N	N	N	N	N		equals()
binary search (ordered array)	log N	N	N	log N	N	N	V	compareTo()
BST	N	N	N	log N	log N	\sqrt{N}	V	compareTo()
2-3 tree	log N	log N	log N	log N	log N	log N	~	compareTo()
red-black BST	$\log N$	$\log N$	log N	log N	log N	$\log N$	~	compareTo()
	*	1	1	1	//	~		







File system model

Page. Contiguous block of data (e.g., a 4,096-byte chunk).

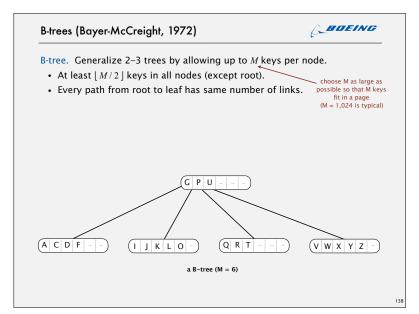
Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

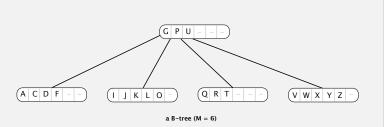
127



Search in a B-tree

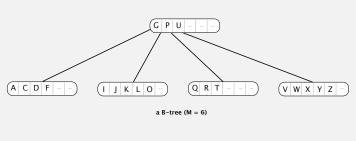
- · Start at root.
- · Check if node contains key.
- Otherwise, find interval for search key and take corresponding link.

could use binary search (but all ops are considered free)



Insertion in a B-tree

- · Search for new key.
- · Insert at bottom.
- Split nodes with M+1 keys on the way back up the B-tree (moving middle key to parent).



Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys requires between $\sim \log_M N$ and $\sim \log_{M2} N$ probes.

Pf. All nodes (except possibly root) have between $\lfloor M/2 \rfloor$ and M keys.

In practice. Number of probes is at most 4. \leftarrow M = 1024; N = 62 billion $\log_{M/2}$ N \leq 4

1

Balanced trees in the wild

Red-Black trees are widely used as system symbol tables.

- Java: java.util.TreeMap, java.util.TreeSet.
- C++ STL: map, multimap, multiset.
- Linux kernel: completely fair scheduler, linux/rbtree.h.
- · Emacs: conservative stack scanning.

B-tree cousins. B+ tree, B*tree, B# tree, ...

B-trees (and cousins) are widely used for file systems and databases.

- Windows: NTFS.Mac: HFS, HFS+.
- Linux: ReiserFS, XFS, Ext3FS, JFS, BTRFS.
- Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

Balanced search trees: quiz 3

What of the following does the B in B-tree not mean?

- A. Bayer
- B. Balanced
- C. Binary
- D. Boeing
- E. I don't know.

" the more you think about what the B in B-trees could mean, the more you learn about B-trees and that is good."

- Rudolph Bayer

142