
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 2/24/16 8:21 PM

2.3 QUICKSORT

‣ quicksort
‣ selection

‣ duplicate keys

‣ system sorts

2

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure.

・Full scientific understanding of their properties has enabled us  
to develop them into practical system sorts.

・Quicksort honored as one of top 10 algorithms of 20th century 
in science and engineering.

 
Mergesort. [last lecture]

 
 
 
 
Quicksort. [this lecture]

...

...

3

Quicksort t-shirt

4

Quicksort t-shirt

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ quicksort
‣ selection

‣ duplicate keys

‣ system sorts

2.3 QUICKSORT

6

Quicksort overview

Step 1. Shuffle the array.

Step 2. Partition the array so that, for some j

・Entry a[j] is in its eventual sorted position.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Step 3. Sort each subarray recursively.

Q U I C K S O R T E X A M P L E

K R A T E L E P U I M Q C X O S

E C A I E K L P U T M Q R X O S

A C E E I K L P U T M Q R X O S

A C E E I K L M O P Q R S T U X

A C E E I K L M O P Q R S T U X

not greater not less

partitioning item

input

shuffle

partition

sort left

sort right

result

Quicksort overview

7

Quicksort overview

Q U I C K S O R T E X A M P L E

input

8

Quicksort overview

Step 1. Shuffle the array.

Q U I C K S O R T E X A M P L E

shuffle

9

Quicksort overview

Step 1. Shuffle the array.

QU I CK SOR T E XA MPLE

shuffle

10

Quicksort overview

Step 2. Partition the array so that, for some j

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

QU I CK SOR T E XA MPLE

partition

11

Quicksort overview

Step 2. Partition the array so that, for some j

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

QUIC K SORTE XA MPLE

partition

<= K >= K

12

Quicksort overview

Step 3. Sort each subarray recursively.

QUIC K SORTE XA MPLE

sort the left subarray

13

Quicksort overview

Step 3. Sort each subarray recursively.

QUIC K SORTE XA MPLE

sort the left subarray

sorted

14

Quicksort overview

Step 3. Sort each subarray recursively.

QUIC K SORTE XA MPLE

sort the right subarray

sorted

15

Quicksort overview

Step 3. Sort each subarray recursively.

Q UIC K SO R TE XA M PLE

sort the right subarray

sortedsorted

16

Quicksort overview

Q UIC K SO R TE XA M PLE

sorted array

・Invented quicksort to translate Russian into English. 
[but couldn't explain his algorithm or implement it!]

・Learned Algol 60 (and recursion).

・Implemented quicksort.

Tony Hoare

17

Tony Hoare 
1980 Turing Award

4

A L G O R I T H M 61
P R O C E D U R E S F O R R A N G E A R I T H M E T I C
ALLAN GIBB*
U n i v e r s i t y of A l b e r t a , C a l g a r y , A l b e r t a , C a n a d a

b e g i n
p r o c e d u r e RANGESUM (a, b, c, d, e, f);

rea l a , b , c , d , e , f ;
c o m m e n t The term "range number" was used by P. S. Dwyer,
Linear Computations (Wiley, 1951). Machine procedures for
range ari thmetic were developed about 1958 by Ramon Moore,
"Automatic Error Analysis in Digital Computa t ion ," LMSD
Report 48421, 28 Jan. 1959, Lockheed Missiles and Space Divi-
sion, Palo Alto, California, 59 pp. If a _< x -< b and c ~ y ~ d,
then RANGESUM yields an interval [e, f] such tha t e =< (x + y)

f. Because of machine operation (truncation or rounding) the
machine sums a -4- c and b -4- d may not provide safe end-points
of the output interval. Thus RANGESUM requires a non-local
real procedure ADJUSTSUM which will compensate for the
machine ari thmetic. The body of ADJUSTSUM will be de-
pendent upon the type of machine for which it is wri t ten and so
is not given here. (An example, however, appears below.) I t
is assumed tha t ADJUSTSUM has as parameters real v and w,
and integer i, and is accompanied by a non-local real procedure
CORRECTION which gives an upper bound to the magnitude
of the error involved in the machine representat ion of a number.
The output ADJUSTSUM provides the left end-point of the
output interval of RANGESUM when ADJUSTSUM is called
with i = --1, and the right end-point when called with i = 1
The procedures RANGESUB, RANGEMPY, and RANGEDVD
provide for the remaining fundamental operations in range
ari thmetic. RANGESQR gives an interval within which the
square of a range nmnber must lie. RNGSUMC, RNGSUBC,
RNGMPYC and RNGDVDC provide for range ari thmetic with
complex range arguments, i.e. the real and imaginary parts
are range numbers~
b e g i n

e := ADJUSTSUM (a, c, - 1) ;
f : = ADJUSTSUM (b, d, 1)

end RANGESUM;
p r o c e d u r e RANGESUB (a, b, c, d, e, f) ;

real a, b ,c , d ,e , f;
c o m m e n t RANGESUM is a non-local procedure;
b e g i n

RANGESUM (a, b, - d , --c, e, f)
end RANGESUB ;
p r o c e d u r e RANGEMPY (a, b, c, d, e, f);

real a, b, c, d, e, f;
c o m m e n t ADJUSTPROD, which appears at the end of this
procedure, is analogous to ADJUSTSUM above and is a non-
local real procedure. MAX and MIN find the maximum and
minimum of a set of real numbers and are non-local;
b e g i n

rea l v, w;
i f a < 0 A c => 0 t h e n

1: b e g i n
v : = c ; c : = a ; a : = v ; w : = d ; d : = b ; b : = w

end 1;
i f a => O t h e n

2: b e g i n
i f c >= 0 t h e n

3 :beg in
e : = a X e ; f := b X d ; g o t o 8

end 3 ;
e : = b X c ;
i f d ~ 0 t h e n

4: b e g i n
f : = b X d ; g o t o 8

end 4;
f : = a X d ; g o t o 8

5: end 2;
i f b > 0 t h e n

6: b e g i n
i f d > 0 t h e n
b e g i n

e := MIN(a X d, b X c);
f : = MAX(a X c , b X d); go t o 8

e n d 6;
e : = b X c; f : = a X c; go t o 8

e n d 5;
f : = a X c ;
i f d _-< O t h e n

7: b e g i n
e : = b X d ; g o t o 8

e n d 7 ;
e : = a X d ;

8: e : = ADJUSTPROD (e, - 1) ;
f := ADJUSTPROD (f, 1)

end RANGEMPY;
p r o c e d u r e RANGEDVD (a, b, c, d, e, f) ;

real a, b, c, d, e, f;
c o m m e n t If the range divisor includes zero the program
exists to a non-local label "zerodvsr" . RANGEDVD assumes a
non-local real procedure ADJUSTQUOT which is analogous
(possibly identical) to ADJUSTPROD;
b e g i n

i f c =< 0 A d ~ 0 t h e n go to zer0dvsr;
i f c < 0 t h e n

1: b e g i n
i f b > 0 t h e n

2: b e g i n
e : = b /d ; go t o 3

e n d 2;
e : = b /c ;

3: i f a -->_ 0 t h e n
4: b e g i n

f : = a /c ; go to 8
e n d 4;
f : = a /d ; go to 8

en d 1 ;
i f a < 0 t h e n

5: b e g i n
e : = a/c; go t o 6

en d 5 ;
e : = a /d ;

6: i f b > 0 t h e n
7: b e g i n

f : = b/c ; go t o 8
e n d 7 ;
f : = b /d ;

8: e := ADJUSTQUOT (e, - 1) ; f : = ADJUSTQUOT (f,1)
en d RANGEDVD ;
p r o c e d u r e RANGESQR (a, b, e, f);

rea l a, b, e, f;
c o m m e n t ADJUSTPROD is a non-10cal procedure;
b e g i n

i f a < 0 t h e n

C o m m u n i c a t i o n s o f t h e &CM 319

n u m b e r) . 9.9 X 10 45 is u sed to r e p r e s e n t inf in i ty . I m a g i n a r y
v a l u e s of x m a y no t be n e g a t i v e a n d reM v a l u e s of x m a y n o t be
s m a l l e r t h a n 1.

Va lues of Qd~'(x) m a y be ca l cu l a t ed eas i ly by h y p e r g e o m e t r i c
ser ies if x is n o t too sma l l no r (n - m) too large. Q~m(x) can be
c o m p u t e d f rom an a p p r o p r i a t e se t of v a l u e s of Pnm(X) if X is nea r
1.0 or ix is n ea r 0. Loss of s ign i f i can t d ig i t s occurs for x as sma l l as
1.1 if n is l a rge r t h a n 10. Loss of s ign i f i can t d ig i t s is a m a j o r diffi-
cu l t y in u s i n g finite p o l y n o m i M r e p r e s e n t a t i o n s also if n is l a rge r
t h a n m. H ow eve r , Q L E G h a s been t e s t e d in reg ions of x a n d n
b o t h large a n d smal l ;
p r o c e d u r e Q L E G (m , n m a x , x, ri, R, Q); v a l u e In, n m a x , x, ri ;

r e a l In, m n a x , x, ri ; r e a l a r r a y R , Q;
b e g i n r e a l t , i, n, q0, s ;

n : = 20;
i f n m a x > 13 t h e n

n : = n m a x + 7 ;
i f ri = 0 t h e n

b e g i n i f m = 0 t h e n
Q[0] : = 0.5 X 10g((x + 1) / (x - 1))
e l s e

b e g i n t : = - - 1 . 0 / s q r t (x X x - - 1);
q0 : = 0;
Q[O] : = t ;
fo r i : = 1 s t e p 1 u n t i l m d o

b e g i n s : = (x + x) X (i - 1) X t
×Q [0] + (3 i - i× i - 2)×q 0 ;
q0 : = Q[0];
Q[0] : = s e n d e n d ;

i f x = 1 t h e n
Q[0] : = 9.9 I" 45;

R[n + 1] : = x - s q r t (x X x - 1);
for i : = n s t e p --1 u n t i l 1 d o

R[i] : = (i + m) / ((i + i + 1) X x
+ (m - i - 1) X R [i + l]) ;

go to t h e e n d ;
i f m = 0 t h e n

b e g i n i f x < 0.5 t b e n
Q[0] : = a r c t a n (x) - 1.5707963 e l s e
Q[0] : = - a r e t a n (1 / x) e n d e l s e

b e g i n t : = 1 / s q r t (x X x + 1);
q0 : = 0;
q[0] := t;
f o r i : = 2 s t e p 1 u n t i l m do

b e g i n s : = (x + x) X (i -- 1) X t X Q[0I
+ (3 i + i X i -- 2) × q0;
qO : = Q[0];
Q[0] := s e n d e n d ;

R[n + 1] : = x - s q r t (x × x + 1);
for i : = n s t e p - 1 u n t i l 1 do

R[i] : = (i + m) / ((i -- m + 1) × R[i + 1]
- - (i + i + 1) X x);

f o r i : = 1 s t e p 2 u n t i l n m a x do
Ril l : = -- Ri l l ;

t h e : f o r i : = 1 s t e p 1 u n t i l n n m x d o
Q[i] : = Q[i - 1] X R[i]

e n d Q L E G ;

* T h i s p r o c e d u r e was deve loped in p a r t u n d e r t he s p o n s o r s h i p
of t he Air Force C a m b r i d g e R e s e a r c h Cen t e r .

ALGORITHM 63
PARTITION
C. A. R. HOARE
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.
p r o c e d u r e p a r t i t i o n (A , M , N , I , J) ; v a l u e M , N ;

a r r a y A; i n t e g e r M , N , 1 , J ;

c o n u n e n t I and J are o u t p u t va r i ab le s , a n d A is t h e a r r a y (wi th
s u b s c r i p t b o u n d s M : N) wh ich is o p e r a t e d u p o n by th i s p rocedure .
P a r t i t i o n t a k e s t h e va lue X of a r a n d o m e l e m e n t of the a r r a y A,
a n d r e a r r a n g e s t he va lue s of t he e l e m e n t s of t he a r r a y in s u c h a
way t h a t t he r e ex is t i n t ege r s I a n d J w i t h t he fo l lowing p rope r t i e s :

M _-< J < I =< N p r o v i d e d M < N
A[R] =< X f o r M =< R _-< J
A[R] = X f o r J < R < I
A[R] ~ X f o r I =< R ~ N

T h e p rocedu re uses an in tege r p rocedu re r a n d o m (M,N) wh ich
chooses e q u i p r o b a b l y a r a n d o m in t ege r F b e t w e e n M an d N, a n d
also a p rocedu re exchange , wh ich e x c h a n g e s t he va lue s of i t s two
p a r a m e t e r s ;
b e g i n r e a l X ; i n t e g e r F;

F : = r a n d o m (M , N) ; X : = A[F];
I : = M ; J : = N ;

up : for I : = I s t e p 1 u n t i l N d o
i f X < A [I] t h e n g o to do wn;

I : = N ;
down: f o r J : = J s t e p --1 u n t i l M d o

i f A [J] < X t h e n g o t o c h a n g e ;
J : = M ;

change : i f I < J t h e n b e g i n e x c h a n g e (A[IL A[J]) ;
I : = I + 1 ; J : = J - 1;
g o to up

e n d
e l s e i f [< F t h e n b e g i n e x c h a n g e (A[IL A[F]) i

I : = I + l
e n d

e l s e i f F < J t l l e n b e g i n e x c h a n g e (A[F], A[J]) ;
J : = J - 1

e n d ;
e n d p a r t i t i o n

ALGORITHM 64
QUICKSORT
C. A. R. HOARE
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.
p r o c e d u r e q u i c k s o r t (A , M , N) ; v a l u e M , N ;

a r r a y A; i n t e g e r M , N ;
c o m m e n t Q u i c k s o r t is a v e r y f a s t a n d c o n v e n i e n t m e t h o d of
s o r t i n g an a r r a y in t he r a n d o m - a c c e s s s tore of a c o m p u t e r . T h e
en t i r e c o n t e n t s of t he s tore m a y be so r t ed , s ince no e x t r a space is
r equ i red . T h e ave rage n u m b e r of c o m p a r i s o n s m a d e is 2 (M - - N) In
(N - - M) , a n d t he ave r age n m n b e r of e x c h a n g e s is one s ix th th i s
a m o u n t . Su i t ab le r e f inemen t s of th i s m e t h o d will be des i rab le for
i t s i m p l e m e n t a t i o n on any ac tua l c o m p u t e r ;
b e g i n i n t e g e r 1,J ;

i f M < N t h e n b e g i n p a r t i t i o n (A , M , N , I , J) ;
q u i c k s o r t (A,M,J) ;
q u i c k s o r t (A, I, N)

e n d
e n d q u i e k s o r t

ALGORITHM 65
FIND
C. A. R. HOARE
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.
p r o c e d u r e f ind (A , M , N , K) ; v a l u e M , N , K ;

a r r a y A; i n t e g e r M , N , K ;
c o m m e n t F i n d will a s s ign to A [K] t he va lue wh ich it would
h a v e if t he a r r a y A [M:N] h a d been sor ted . T h e a r r a y A will be
p a r t l y so r t ed , a n d s u b s e q u e n t en t r i e s will be f a s t e r t h a n t h e f i rs t ;

C o m m u n i c a t i o n s o f t h e A C M 321

Communications of the ACM (July 1961)

・Invented quicksort to translate Russian into English.

・[but couldn't explain his algorithm or implement it!]

・Learned Algol 60 (and recursion).

・Implemented quicksort.

Tony Hoare

18

“ I call it my billion-dollar mistake. It was the invention of the null
 reference in 1965… This has led to innumerable errors,
 vulnerabilities, and system crashes, which have probably caused
 a billion dollars of pain and damage in the last forty years. ”

Tony Hoare 
1980 Turing Award

・Refined and popularized quicksort.

・Analyzed many versions of quicksort.

Bob Sedgewick

19

Bob Sedgewick

Programming
Techniques

S. L. Graham, R. L. Rivest
Editors

Implementing
Quicksort Programs
Robert Sedgewick
Brown University

This paper is a practical study of how to implement
the Quicksort sorting algorithm and its best variants on
real computers, including how to apply various code
optimization techniques. A detailed implementation
combining the most effective improvements to
Quicksort is given, along with a discussion of how to
implement it in assembly language. Analytic results
describing the performance of the programs are
summarized. A variety of special situations are
considered from a practical standpoint to illustrate
Quicksort's wide applicability as an internal sorting
method which requires negligible extra storage.

Key Words and Phrases: Quicksort, analysis of
algorithms, code optimization, sorting

CR Categories: 4.0, 4.6, 5.25, 5.31, 5.5

Introduction

One of the most widely studied practical problems in
computer science is sorting: the use of a computer to put
files in order. A person wishing to use a computer to sort
is faced with the problem of determining which of the
many available algorithms is best suited for his purpose.
This task is becoming less difficult than it once was for
three reasons. First, sorting is an area in which the
mathematical analysis of algorithms has been particu-
larly successful: we can predict the performance of many
sorting methods and compare them intelligently. Second,
we have a great deal of experience using sorting algo-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was supported in part by the Fannie and John Hertz
Foundation and in part by NSF Grants. No. GJ-28074 and MCS75-
23738.

Author's address: Division of Applied Mathematics and Computer
Science Program, Brown University, Providence, RI 02912.
© 1978 ACM 0001-0782/78/1000-0847 $00.75

847

rithms, and we can learn from that experience to separate
good algorithms from bad ones. Third, if the tile fits into
the memory of the computer, there is one algorithm,
called Quicksort, which has been shown to perform well
in a variety of situations. Not only is this algorithm
simpler than many other sorting algorithms, but empir-
ical [2, ll , 13, 21] and analytic [9] studies show that
Quicksort can be expected to be up to twice as fast as its
nearest competitors. The method is simple enough to be
learned by programmers who have no previous experi-
ence with sorting, and those who do know other sorting
methods should also find it profitable to learn about
Quicksort.

Because of its prominence, it is appropriate to study
how Quicksort might be improved. This subject has
received considerable attention (see, for example, [1, 4,
11, 13, 14, 18, 20]), but few real improvements have been
suggested beyond those described by C.A.R. Hoare, the
inventor of Quicksort, in his original papers [5, 6]. Hoare
also showed how to analyze Quicksort and predict its
running time. The analysis has since been extended to
the improvements that he suggested, and used to indicate
how they may best be implemented [9, 15, 17]. The
subject of the careful implementation of Quicksort has
not been studied as widely as global improvements to
the algorithm, but the savings to be realized are as
significant. The history of Quicksort is quite complex,
and [15] contains a full survey of the many variants
which, have been proposed.

The purpose of this paper is to describe in detail how
Quicksort can best be implemented to handle actual
applications on real computers. A general description of
the algorithm is followed by descriptions of the most
effective improvements that have been proposed (as
demonstrated in [15]). Next, an implementation of
Quicksort in a typical high level language is presented,
and assembly language implementation issues are con-
sidered. This discussion should easily translate to real
languages on real machines. Finally, a number of special
issues are considered which may be of importance in
particular sorting applications.

This paper is intended to be a self-contained overview
of the properties of Quicksort for use by those who need
to actually implement and use the algorithm. A compan-
ion paper [17] provides the analytical results which su-
port much of the discussion presented here.

The Algofithm

Quicksort is a recursive method for sorting an array
A[1], A[2] A[N] by first "partitioning" it so that the
following conditions hold:

(i) Some key v is in its final position in the array. (If it
is thejth smallest, it is in position A[j].)

(ii) All elements to the left of A[j] are less than or equal
to it. (These elements A [1], A [2] A [j - 1] are
called the "left subtile.")

Communications October 1978
of Volume 21
the ACM Number 10

Acta Informatica 7, 327--355 (1977)
 9 by Springer-Verlag 1977

The Analysis of Quicksort Programs*
Robert Sedgewick

Received January 19, t976

Summary. The Quicksort sorting algorithm and its best variants are presented
and analyzed. Results are derived which make it possible to obtain exact formulas de-
scribing the total expected running time of particular implementations on real com-
puters of Quick, sort and an improvement called the median-of-three modification.
Detailed analysis of the effect of an implementation technique called loop unwrapping
is presented. The paper is intended not only to present results of direct practical utility,
but also to illustrate the intriguing mathematics which arises in the complete analysis
of this important algorithm.

1. Introduction

In t96t-62 C.A.R. Hoare presented a new algorithm called Quicksort [7, 8]
which is suitable for putting files into order by computer. This method combines
elegance and efficiency, and it remains today the most useful general-purpose
sorting method for computers. The practical utility of the algorithm has meant
not only that it has been sfibjected to countless modifications (though few real
improvements have been suggested beyond those described by Hoare), but also
that it has been used .in countless applications, often to sort very large, f i les .
Consequently, it is important to be able to estimate how long an implementation
of Quicksort can be expected to run, in order to be able to compare variants or
estimate expenses. Fortunately, as we shall see, this is an algorithm which can be
analyzed. (Hoare recognized this, and gave some analytic results in [8].) I t is
possible to derive exact formulas describing the average performance of real
implementations of the algorithm.

The history of Quicksort is quite complex, and a full survey of the many variants
which have been proposed is given in [t 7]. In addition, [t 7] gives analytic results
describing many of the improvements which have been suggested for the purpose
of determining which are the most effective. There are many examples in [~ 7]
which illustrate that the simplicity of Quicksort is deceiving. The algorithm has
hidden subtleties which can have significant effects on performance. Furthermore,
as we shall see, simple changes to the algorithm or its implementation can radically
change the analysis. In this paper, we shall consider in detail how practical
implementations of the best versions of Quicksort may be analyzed.

In this paper, we will deal with the analysis of: (i) the basic Quicksort algo-
ri thm; (ii) an improvement called the "median-of-three" modification which
reduces the average number of comparisons required; and (iii) an implementation
technique called "loop unwrapping" which reduces the amount of overhead per
comparison. These particular methods not only represent the most effective vari-

* This work was supported in part by the Fannie and John Hertz Foundation, and
in part by the National Science Foundation Grants No. GJ-28074 and MCS75-23738.
22 Acta Informatica, Vol. 7

Quicksort partitioning: first try

1. Pick a[0] as the partitioning element

2. Create an auxiliary array aux

3. Scan the array and copy each item less than a[0] to aux

4. Scan the array and copy each item not less than a[0] to aux

5. Copy aux back to a

Problems

・Requires space for auxiliary array

・Requires multiple scans of the array

20

21

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

stop i scan because a[i] >= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

stop j scan and exchange a[i] with a[j]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

stop i scan because a[i] >= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

stop j scan and exchange a[i] with a[j]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

stop i scan because a[i] >= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

stop j scan and exchange a[i] with a[j]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E E L P U T M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E E L P U T M Q R X O S

i j

stop i scan because a[i] >= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E E L P U T M Q R X O S

ij

stop j scan because a[j] <= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

When pointers cross.

・Exchange a[lo] with a[j].

lo

K C A I E E L P U T M Q R X O S

ij

pointers cross: exchange a[lo] with a[j]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

When pointers cross.

・Exchange a[lo] with a[j].

lo

E C A I E K L P U T M Q R X O S

hij

partitioned!

43

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

When pointers cross.

・Exchange a[lo] with a[j].

lo

E C A I E K L P U T M Q R X O S

hij

partitioned!
44

Quicksort: Java code for partitioning

private static int partition(Comparable[] a, int lo, int hi)
{
 int i = lo, j = hi+1;
 while (true)
 {
 while (less(a[++i], a[lo]))
 if (i == hi) break;

 while (less(a[lo], a[--j]))
 if (j == lo) break;

 if (i >= j) break;
 exch(a, i, j);
 }

 exch(a, lo, j);
 return j;
}

swap with partitioning item

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index of item now known to be in place

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

Are the array bounds checks in the previous slide necessary?

A. Yes

B. No

C. Both of the above

D. Neither of the above

E. I don't know.

Trick question! One of them is necessary and the other isn’t.

45

Quicksort quiz 1

How many compares to partition an array of length N ?

A. ~ ¼ N

B. ~ ½ N

C. ~ N

D. ~ N lg N

E. I don't know.

46

Quicksort quiz 2

M A B C D E V W X Y Z

0 1 2 3 4 5 6 7 8 9 10

scan until ≥ M

scan until ≤ M

N+1 compares in worst case
(E and V are compared with M twice)

47

Quicksort: Java implementation

public class Quick
{
 private static int partition(Comparable[] a, int lo, int hi)
 { /* see previous slide */ }

 public static void sort(Comparable[] a)
 {
 StdRandom.shuffle(a);
 sort(a, 0, a.length - 1);
 }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }
}

shuffle needed
for performance

guarantee
(stay tuned)

Quicksort trace

48

 lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 Q U I C K S O R T E X A M P L E
 K R A T E L E P U I M Q C X O S
 0 5 15 E C A I E K L P U T M Q R X O S
 0 3 4 E C A E I K L P U T M Q R X O S
 0 2 2 A C E E I K L P U T M Q R X O S
 0 0 1 A C E E I K L P U T M Q R X O S
 1 1 A C E E I K L P U T M Q R X O S
 4 4 A C E E I K L P U T M Q R X O S
 6 6 15 A C E E I K L P U T M Q R X O S
 7 9 15 A C E E I K L M O P T Q R X U S
 7 7 8 A C E E I K L M O P T Q R X U S
 8 8 A C E E I K L M O P T Q R X U S
 10 13 15 A C E E I K L M O P S Q R T U X
 10 12 12 A C E E I K L M O P R Q S T U X
 10 11 11 A C E E I K L M O P Q R S T U X
 10 10 A C E E I K L M O P Q R S T U X
 14 14 15 A C E E I K L M O P Q R S T U X
 15 15 A C E E I K L M O P Q R S T U X

 A C E E I K L M O P Q R S T U X

no partition
 for subarrays

 of size 1

initial values

random shuffle

result

Quicksort trace (array contents after each partition)

Quicksort animation

49

http://www.sorting-algorithms.com/quick-sort

50 random items

in order

current subarray

algorithm position

not in order

50

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier  
(and stable), but is not worth the cost.

 
Terminating the loop. Testing whether the pointers cross is trickier 
than it might seem.

 
Equal keys. When duplicates are present, it is (counter-intuitively) 
better to stop scans on keys equal to the partitioning item's key.

 
Preserving randomness. Shuffling is needed for performance guarantee.

Equivalent alternative. Pick a random partitioning item in each subarray.

stay tuned

51

Quicksort: empirical analysis (1961)

Running time estimates:

・Algol 60 implementation.

・National-Elliott 405 computer.

Elliott 405 magnetic disc
(16K words)

sorting N 6-word items with 1-word keys

52

Quicksort: best-case analysis

Best case. Number of compares is ~ N lg N.

random shuffle

initial values

Worst case. Number of compares is ~ ½ N 2 .

53

Quicksort: worst-case analysis

random shuffle

initial values

Due to bad randomness,
not bad input

Proposition. The expected number of compares CN to quicksort an array of  
N distinct keys is ~ 2N ln N (and the number of exchanges is ~ ⅓ N ln N).

Pf. CN satisfies the recurrence C0 = C1 = 0 and for N ≥ 2:

・Multiply both sides by N and collect terms:

・Subtract from this equation the same equation for N - 1:

・Rearrange terms and divide by N (N + 1):

54

Quicksort: analysis of expected running time

CN

N + 1
=

CN�1

N
+

2
N + 1

NCN = N(N + 1) + 2(C0 + C1 + . . . + CN�1)

NCN � (N � 1)CN�1 = 2N + 2CN�1

CN = (N + 1) +

�
C0 + CN�1

N

�
+

�
C1 + CN�2

N

�
+ . . . +

�
CN�1 + C0

N

�
partitioning

partitioning probability

left right

・Repeatedly apply previous equation:

・Approximate sum by an integral:

・Finally, the desired result:

55

Quicksort: analysis of expected running time

CN � 2(N + 1) lnN ⇥ 1.39N lg N

CN = 2(N + 1)
✓

1
3

+
1
4

+
1
5

+ . . .

1
N + 1

◆

⇠ 2(N + 1)
Z N+1

3

1
x

dx

CN

N + 1
=

CN�1

N
+

2
N + 1

=
CN�2

N � 1
+

2
N

+
2

N + 1

=
CN�3

N � 2
+

2
N � 1

+
2
N

+
2

N + 1

=
2
3

+
2
4

+
2
5

+ . . . +
2

N + 1

substitute previous equation

CN

N + 1
=

CN�1

N
+

2
N + 1

CN

N + 1
=

CN�1

N
+

2
N + 1

=
CN�2

N � 1
+

2
N

+
2

N + 1

=
CN�3

N � 2
+

2
N � 1

+
2
N

+
2

N + 1

=
2
3

+
2
4

+
2
5

+ . . . +
2

N + 1

CN

N + 1
=

CN�1

N
+

2
N + 1

=
CN�2

N � 1
+

2
N

+
2

N + 1

=
CN�3

N � 2
+

2
N � 1

+
2
N

+
2

N + 1

=
2
3

+
2
4

+
2
5

+ . . . +
2

N + 1

CN = 2(N + 1)
✓

1
3

+
1
4

+
1
5

+ . . .

1
N + 1

◆

⇠ 2(N + 1)
Z N+1

3

1
x

dx

56

Quicksort: worst case is exponentially unlikely

Probability (# compares > 0.1 N2) < 1/2N for large N.

Things more likely than quicksort being quadratic on a million-item array:

・Lightning bolt strikes computer during execution.

・Get trampled by a herd of zebra above the Arctic Circle, while being hit

by a meteor.

・I become the next president of these United States.

 
The probability of needing even 2N lg N compares (instead of ~ 1.39 N lg N) is

negligible for large N.

 
 
 
 
Bottom line. Assuming good randomness and no implementation bugs, 
this is as good as a worst-case ~ 1.39 N lg N guarantee.

Important caveats!

57

Quicksort: summary of performance characteristics

Quicksort is a randomized algorithm.

・Guaranteed to be correct.

・Running time depends on random shuffle.

 
Expected running time.

・Expected number of compares is ~ 1.39 N lg N.

・Independent of the input.

 
Comparison to mergesort.

・39% more compares than mergesort.

・Faster than mergesort in practice because of less data movement.

 
Best case. Number of compares is ~ N lg N. 
Worst case. Number of compares is ~ ½ N 2. 
[but more likely that lightning bolt strikes computer during execution]

How much extra space does quicksort use?

A. Θ(1)

B. Θ(ln N)

C. Θ(N)

D. Θ(N ln N)

E. I don't know.

58

Quicksort quiz 3

Proposition. Quicksort is an in-place sorting algorithm.

Pf.

・Partitioning: constant extra space.

・Depth of recursion: logarithmic extra space (with high probability).

 
 
 
 
Proposition. Quicksort is not stable.

Pf. [by counterexample]

59

Quicksort properties

i j 0 1 2 3

B1 C1 C2 A1

1 3 B1 C1 C2 A1

1 3 B1 A1 C2 C1

0 1 A1 B1 C2 C1

can guarantee logarithmic depth by recurring
on smaller subarray before larger subarray

(but requires using an explicit stack)

Insertion sort small subarrays.

・Like mergesort, quicksort has too much overhead for tiny subarrays.

・Cutoff to insertion sort for ≈ 10 items.

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo + CUTOFF - 1)
 {
 Insertion.sort(a, lo, hi);
 return;
 }
 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }

60

Quicksort: practical improvements

61

Quicksort: practical improvements

Median of sample.

・Best choice of pivot item = median.

・Estimate true median by taking median of sample.

・Median-of-3 (random) items.

~ 12/7 N ln N compares (14% fewer)
~ 12/35 N ln N exchanges (3% more)

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;

 int median = medianOf3(a, lo, lo + (hi - lo)/2, hi);
 swap(a, lo, median);

 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ quicksort
‣ selection

‣ duplicate keys

‣ system sorts

2.3 QUICKSORT

63

Selection

Goal. Given an array of N items, find the kth smallest item.

Ex. Min (k = 0), max (k = N - 1), median (k = N / 2).
 
Applications.

・Order statistics.

・Find the "top k."
 
Use theory as a guide.

・Easy N log N upper bound. How?

・Easy N upper bound for k = 1, 2, 3. How?

・Easy N lower bound. Why?

 
Which is true?

・N log N lower bound?

・N upper bound?

is selection as hard as sorting?

is there a linear-time algorithm?

Partition array so that:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

64

Quick-select

public static Comparable select(Comparable[] a, int k)
{
 StdRandom.shuffle(a);
 int lo = 0, hi = a.length - 1;
 while (hi > lo) 
 {
 int j = partition(a, lo, hi);
 if (j < k) lo = j + 1;
 else if (j > k) hi = j - 1;
 else return a[k];
 }
 return a[k];
}

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

if a[k] is here
set hi to j-1

if a[k] is here
set lo to j+1

65

Quick-select: mathematical analysis

Proposition. Quick-select takes expected linear time.

 
Pf.

Omitted, similar to the analysis of expected running time of quicksort.

There exists a deterministic algorithm with linear running time, but we

don’t use it because the constants are bad.

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ quicksort
‣ selection

‣ duplicate keys

‣ system sorts

2.3 QUICKSORT

67

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

・Sort population by age.

・Remove duplicates from mailing list.

・Sort job applicants by college attended.

 Typical characteristics of such applications.

・Huge array.

・Small number of key values.

Chicago 09:00:00
Phoenix 09:00:03
Houston 09:00:13
Chicago 09:00:59
Houston 09:01:10
Chicago 09:03:13
Seattle 09:10:11
Seattle 09:10:25
Phoenix 09:14:25
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Seattle 09:22:43
Seattle 09:22:54
Chicago 09:25:52
Chicago 09:35:21
Seattle 09:36:14
Phoenix 09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

key

68

War story (system sort in C)

Bug. A qsort() call that should have taken seconds was taking minutes.

 
 
 
 
 
 
 
 
At the time, almost all qsort() implementations based on those in:

・Version 7 Unix (1979): quadratic time to sort organ-pipe arrays.

・BSD Unix (1983): quadratic time to sort random arrays of 0s and 1s.

Why is qsort() so slow?

69

Duplicate keys: stop on equal keys

Our partitioning subroutine stops both scans on equal keys.

 
 
 
 
 
 
 
 
Q. Why not continue scans on equal keys?

P G E P A Q B P Y C O U P Z S R

scan until ≥ P scan until ≤ P

P G E P A Q B P Y C O U P Z S R

scan until > P scan until < P

What is the result of partitioning the following array (skip over equal keys)?  
 
 
 
 

A.  

B.  

C.  

D. I don't know.
70

Quicksort quiz 4

A A A A A A A A A A A A A A A A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

scan until > A scan until < A

What is the result of partitioning the following array (stop on equal keys)?  
 
 
 
 

A.  

B.  

C.  

D. I don't know.
71

Quicksort quiz 5

A A A A A A A A A A A A A A A A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

scan until ≥ A scan until ≤ A

Partitioning an array with all equal keys

72

Duplicate keys: partitioning strategies

Bad. Don't stop scans on equal keys. 
 [~ ½ N 2 compares when all keys equal]

 
 
 
 
Good. Stop scans on equal keys. 
 [~ N lg N compares when all keys equal]

 
 
 
 
Better. Put all equal keys in place. How? 
 [~ N compares when all keys equal]

73

B A A B A B B B C C C A A A A A A A A A A A

B A A B A B C C B C B A A A A A A A A A A A

A A A B B B B B C C C A A A A A A A A A A A

Goal. Partition array into three parts so that:

・Entries between lt and gt equal to the partition item.

・No larger entries to left of lt.

・No smaller entries to right of gt.

 
 
 
 
 
 
 
 
 

74

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

75

Dijkstra 3-way partitioning demo

lo

P A B X W P P V P D P C Y Z

hi

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

lo

P A B X W P P V P D P C Y Z

hi

lt gti

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

P A B X W P P V P D P C Y Z

lt gti

unknown
equal

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A P B X W P P V P D P C Y Z

lt gti

unknown
less equal

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B P X W P P V P D P C Y Z

lt gti

unknownless
equal

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B P Z W P P V P D P C Y X

lt gti

greater
unknownless

equal

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B P Y W P P V P D P C Z X

lt gti

greaterunknownless
equal

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B P C W P P V P D P Y Z X

lt gti

less greaterunknown
equal

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C P W P P V P D P Y Z X

lt gti

less greaterunknown
equal

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C P P P P V P D W Y Z X

lt gti

less greaterunknown
equal

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C P P P P V P D W Y Z X

lt gti

less equal greaterunknown

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C P P P P V P D W Y Z X

lt gti

less equal greaterunknown

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C P P P P V P D W Y Z X

lt gti

less equal greaterunknown

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C P P P P D P V W Y Z X

lt gti

less equal greater
unknown

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C D P P P P P V W Y Z X

lt gti

less equal greater
unknown

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

A B C D P P P P P V W Y Z X

lt gt i

equalless greater

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

Dijkstra 3-way partitioning demo

lo

A B C D P P P P P V W Y Z X

hilt gt

equalless greater

・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i] < v): exchange a[lt] with a[i]; increment both lt and i

– (a[i] > v): exchange a[gt] with a[i]; decrement gt
– (a[i] == v): increment i

92

Dijkstra 3-way partitioning demo

lo

A B C D P P P P P V W Y Z X

hi

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant

93

3-way quicksort: visual trace

equal to partitioning element

Visual trace of quicksort with 3-way partitioning

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ quicksort
‣ selection

‣ duplicate keys

‣ system sorts

2.3 QUICKSORT

Sorting algorithms are essential in a broad variety of applications:

・Sort a list of names.

・Organize an MP3 library.

・Display Google PageRank results.

・List RSS feed in reverse chronological order.

・Find the median.

・Identify statistical outliers.

・Binary search in a database.

・Find duplicates in a mailing list.

・Data compression.

・Computer graphics.

・Computational biology.

・Load balancing on a parallel computer. 
. . .

95

Sorting applications

obvious applications

problems become easy once
items are in sorted order

non-obvious applications

96

Dual-pivot quicksort

Use two partitioning items p1 and p2 and partition into three subarrays:

・Keys less than p1.

・Keys between p1 and p2.

・Keys greater than p2.

 
 
 
 
 
 
 
Recursively sort three subarrays.

 
 
 
Note. Skip middle subarray if p1 = p2.

< p1 p1 ≥ p1 and ≤ p2 p2 > p2

lo hilt gt

degenerates to Dijkstra's 3-way partitioning

97

Dual-pivot quicksort

Use two partitioning items p1 and p2 and partition into three subarrays:

・Keys less than p1.

・Keys between p1 and p2.

・Keys greater than p2.

 
 
 
 
 
 
 
 
 
 
Now widely used. Java 7, Python unstable sort, Android, …

< p1 p1 ≥ p1 and ≤ p2 p2 > p2

lo hilt gt

98

System sort in Java 7

Arrays.sort().

・Has one method for objects that are Comparable.

・Has an overloaded method for each primitive type.

・Has an overloaded method for use with a Comparator.

・Has overloaded methods for sorting subarrays.

 
Algorithms.

・Dual-pivot quicksort for primitive types.

・Timsort for reference types.

 
 
Q. Why use different algorithms for primitive and reference types?

 
 
 
Bottom line. Use the system sort!

Review: three types of averages in measuring efficiency of algorithms

Average-case. Average over all possible inputs.

Expected.* Average over all possible values of RNG.  
 Worst-case over all possible inputs.

Amortized. Average over a sequence of inputs. 
 (Must be stateful, such as a data structure.)

 
 
Example 1. The _______ running time of quicksort is O(N lg N). But if we

omitted the shuffling step, only the _______ running time would be O(N lg N).

 
Example 2. The _______ running time of selection is O(N) with quick-select,

but if we only care about the _______ running time, we’d first sort the array.

99

*Some people use average-case to refer to both.  

 If you do, it’s important to always know which one you’re talking about.

The _______ running time of quicksort is O(N lg N). But if we omitted the

shuffling step, only the _______ running time would be O(N lg N).

A. Average-case, expected

B. Expected, average-case

C. Amortized, expected

D. Expected, amortized

E. I don't know.

100

Quicksort quiz 6

The _______ running time of selection is O(N) with quick-select, but if we only

care about the _______ running time, we’d first sort the array.

A. Average-case, amortized

B. Amortized, average-case

C. Amortized, expected

D. Expected, amortized

E. I don't know.

101

Quicksort quiz 7

102

Sorting summary

inplace? stable? best average worst remarks

selection ✔ ½ N 2 ½ N 2 ½ N 2 N exchanges

insertion ✔ ✔ N ¼ N 2 ½ N 2
use for small N

or partially ordered

merge ✔ ½ N lg N N lg N N lg N
N log N guarantee;

stable

timsort ✔ N N lg N N lg N
improves mergesort

when preexisting order

quick ✔ N lg N
2 N ln N

(expected) ½ N 2
N log N probabilistic guarantee; 

fastest in practice

3-way quick ✔ N 2 N ln N
(expected)

½ N 2
improves quicksort 
when duplicate keys

? ✔ ✔ N N lg N N lg N holy sorting grail

