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2.3 QUICKSORT

» quicksort
» selection
» duplicate keys

» system sorts

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure.

« Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.

* Quicksort honored as one of top 10 algorithms of 20th century
in science and engineering.

Mergesort. [last lecture]
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Quicksort. [this lecture]
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2.3 QUICKSORT

Quicksort overview

» quicksort

Step 1. Shuffle the array.

Step 2. Partition the array so that, for some j
« Entry a[j] is in its eventual sorted position.
* No larger entry to the left of j.
» No smaller entry to the right of j.

Step 3. Sort each subarray recursively.

impt Q U I C K S O R TEXAMP L E
shuffle K AT ELE®PUIMAOQCXOS

partitioning item

partiion. E C A I E K L P U T M Q R X O S

Quicksort overview

input

™ not greater not less =~
sortleft A C E E I
sort right L M O P Q R
resut A C E E I KL M O P QR
Quicksort overview
Step 1. Shuffle the array.
shuffle
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Quicksort overview

Step 1. Shuffle the array.

shuffle

Quicksort overview

Step 2. Partition the array so that, for some j
« Entry a[j] is in place.
« No larger entry to the left of j.
* No smaller entry to the right of j.

partition

RATELEPUIMQCXOS

Quicksort overview

Step 2. Partition the array so that, for some j
« Entry a[j] is in place.
« No larger entry to the left of j.
« No smaller entry to the right of j.

partition

ECAIELPUTMQRXOS
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Quicksort overview

Step 3. Sort each subarray recursively.

sort the left subarray

ECAIELPUTMQRXOS




Quicksort overview

Step 3. Sort each subarray recursively.

sort the left subarray

ACEEILPUTMQRXOS

—_—
sorted

Quicksort overview

Step 3. Sort each subarray recursively.

sort the right subarray

ACEEILPUTMQRXOS

_—
sorted

Quicksort overview

Step 3. Sort each subarray recursively.

sort the right subarray

ACEEILMOPQRSTUX

sorted sorted

Quicksort overview

sorted array
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Tony Hoare

« Invented quicksort to translate Russian into English.
[ but couldn't explain his algorithm or implement it! ]

« Learned Algol 60 (and recursion).

* Implemented quicksort.

ALGORITHM G4

QUICKSORT

. A R. Hoane

Elliott Brothers Ltd., Borchamwood, Hertfordshire, Eng.
procedure quicksort (4, value MN;
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end quicksort

Communications of the ACM (lulv 1961)

Tony Hoare
1980 Turing Award

Tony Hoare

« Invented quicksort to translate Russian into English.
[ but couldn't explain his algorithm or implement it! ]
« Learned Algol 60 (and recursion).

* Implemented quicksort.

Tony Hoare
1980 Turing Award

“I call it my billion-dollar mistake. It was the invention of the null
reference in 1965... This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused

a billion dollars of pain and damage in the last forty years.”

Bob Sedgewick

« Refined and popularized quicksort.
Analyzed many versions of quicksort.
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Quicksort partitioning: first try

. Pick a[0] as the partitioning element

. Create an auxiliary array aux

. Scan the array and copy each item less than a[0] to aux

. Scan the array and copy each item not less than a[0] to aux

vi W N =

. Copy aux back to a

Problems
« Requires space for auxiliary array
» Requires multiple scans of the array




Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j1 > a[lol).
* Exchange a[i] with a[j].
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stop i scan because a[i] >= a[lo]
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Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j1 > a[lol).
* Exchange a[i] with a[j].

When pointers cross.
« Exchange a[1o0] with a[j].

pointers cross: exchange a[lo] with a[j]

Quicksort partitioning demo

Repeat until i and j pointers cross.
» Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j]1 > a[lol).
* Exchange a[i] with a[j].

When pointers cross.
« Exchange a[1o0] with a[j].

partitioned!

Quicksort partitioning demo

Repeat until i and j pointers cross.
« Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j]1 > a[lol).
» Exchange a[i] with a[j].

When pointers cross.
« Exchange a[1o0] with a[j].

partitioned!

Quicksort: Java code for partitioning

private static int partition(Comparable[] a, int To, int hi)

{
int i = To, j = hi+l;
while (true)
while (Tess(a[++i], a[l01))
find item on left to swa
if (i == hi) break; ’
while (less(a[lol, a[--j1)) find item on right to swap
if (j == 10) break;
if (i >= j) break; check if pointers cross
exch(a, i, j); swap
}
exch(a, lo, j); swap with partitioning item
3 return j; return index of item now known to be in place
before v during v‘ =v ‘ ‘ =v after =v
1 1 1 1 t
To hi i 3 To




Quicksort quiz 1

Are the array bounds checks in the previous slide necessary?

A. Yes

B. No

C. Both of the above
D. Neither of the above
E. Idon't know.

Trick question! One of them is necessary and the other isn’t.

Quicksort quiz 2

How many compares to partition an array of length N?

A. ~UN

B. ~%N

C. ~N

D. ~NIgN

E.  Idon't know.

Quicksort: Java implementation

public class Quick

{
private static int partition(Comparable[] a, int lo, int hi)
{ /* see previous slide */ }

public static void sort(Comparable[] a)
{

StdRandom.shuffle(a);

sort(a, 0, a.length - 1);
}

private static void sort(Comparable[] a, int lo, int hi)
{

if (hi <= To) return;

int j = partition(a, lo, hi);

sort(a, lo, j-1);

sort(a, j+1, hi);

shuffle needed

L for performance
guarantee
(stay tuned)

Quicksort trace

To  j
initial values
random shuffle

0 5

0o 3

0 2

0 0

/ 5

no partition 7 9

for subarrays 7 7

of size ]

10 13

10 12

10 11

14 14

result

Quicksort trace (array contents after each partition)

[

RrNsG

15
15

15
12
11

15

0 1 2 3 4 5 6 7 8 9101112 13 14 15
Q UIOCKSORTEINXAMPILE
K R AATELEPUIMAOQOCXOS
ECAIEIKTLPUTMQRIXDOS
ECAETI
A C E
A C
C
I
L PUTMAQRIXDOS
M 0O P T QR X US
M 0
0
S Q R T U X
R Q S
Q R
Q
U X
X
A CEETIKLMOPO QRSTUX




Quicksort animation

50 random items

http://www.sorting-algorithms.com/quick-sort

|||>

algorithm position
in order
current subarray

not in order

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier
(and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is trickier
than it might seem.

Equal keys. When duplicates are present, it is (counter-intuitively)
better to stop scans on keys equal to the partitioning item's key. «— stay tuned

Preserving randomness. Shuffling is needed for performance guarantee.
Equivalent alternative. Pick a random partitioning item in each subarray.

Quicksort: empirical analysis (1961)

Running time estimates:
« Algol 60 implementation.
« National-Elliott 405 computer.

Table 1
NUMBER OF ITEMS MERGE SORT QUICKSORT
500 2 min 8 sec 1 min 21 sec
1,000 4 min 48 sec 3 min 8 sec
1.500 8 min 15sec* | Smin 6 sec
2.000 11 min Osec* | 6 min 47 sec

* These figures were computed by formula, since they cannot
be achieved on the 405 owing to limited store size.

sorting N 6-word items with 1-word keys

Elliott 405 magnetic disc
(16K words)

Quicksort: best-case analysis

Best case. Number of compares is ~Nlg N.

lo j hi 01 2 3 4 5 6 7 8 9 1011 12 13 14
initial values HACBTFEGDTLI K J NMDO
randomshuffe H A C B F E G D L I K J N M O
0O 7 14 DACBTFEGHTILIK]JNMDO
0 3 6 B ACDTFEG
0 1 2 A BC
A
C
4 5 6 E F G
E
G
8 11 14 J I K L NMO
8 9 10 I J K
I
K
12 13 14 M N O
M
o]

A B CDETFGHI1I J KLMNDO




Quicksort: worst-case analysis

Worst case. Number of compares is ~ ' N2.

Quicksort: analysis of expected running time

Proposition. The expected number of compares C, to quicksort an array of
N distinct keys is ~2N InN (and the number of exchanges is ~% NIn N).

Pf. Cy satisfies the recurrence C,=C, =0 and for N > 2:

partitioning \elﬁ right
' Co+C Ch 4 Chys c c
TSR ( U+NN7]> u < ]+NN’Z) b ('MTH)

« Multiply both sides by N and collect terms: partitioning probability

NCy = N(N+1) + 2(Co + C1 + ... +Cn-1)

» Subtract from this equation the same equation for N - 1:

NCn — (N—-1)Cn-1 =2N + 2Cn—3

* Rearrange terms and divide by N (N +1):
Cy  COna 2

N+l N T Ny1

lo j hi 01 2 3 4 5 6 7 8 9 1011 1213 14
initialvalves A B C D E F G H | J K L MN O
randomshuffie A B C D E F G H I J K L M N O <« Due tobad randomness,
0 0 14 ABCDETFGHTI J KLMNDO not bad input
1 1 14 B CDETFGHII J KLMNDO
2 2 14 CDEFGHI1I J KLMNDO
3 3 14 DEFGHI J KLMNDO
4 4 14 EFGHI J KLMNDO
5 5 14 FGH I J KLMNDO
6 6 14 GCH 1 J KLMNDO
7 7 14 H 1 J KL MNO
8 8 14 I J K L MNO
9 9 14 J K L MNO
10 10 14 K L MNO
11 11 14 L M N O
12 12 14 M N O
13 13 14 N O
o
A B CDETFGHI J KLMNDO
53
Quicksort: analysis of expected running time
« Repeatedly apply previous equation:
Cy Oy 2
N+1 N T N4
Cn—2 2 2 : ’ )
= — = L = L <«—— substitute previous equation
N-1 N N+1
N-3 2 2 2
- ]\“'72+N71+N+N+1
2 2 2 2
S 3tits oty

« Approximate sum by an integral:

1 1 1 1
Cn = 2(N+1)(§+Z+g+...N—+l>
N+1 4
2(N +1 —d

« Finally, the desired result:

2

Cy ~ 2(N+1)InN ~ 1.39NIgN

Quicksort: worst case is exponentially unlikely

Probability (# compares > 0.1 N?) < 1/2N for large N.

Things more likely than quicksort being quadratic on a million-item array:
« Lightning bolt strikes computer during execution.
« Get trampled by a herd of zebra above the Arctic Circle, while being hit
by a meteor.
« | become the next president of these United States.

The probability of needing even 2N 1gN compares (instead of ~ .39 N1gN) is
negligible for large N.

Important caveats!

e

Bottom line. Assuming good randomness and no implementation bugs,
this is as good as a worst-case ~ /.39 NIg N guarantee.




Quicksort: summary of performance characteristics

Quicksort is a randomized algorithm.
« Guaranteed to be correct.
« Running time depends on random shuffle.

Expected running time.
* Expected number of compares is ~1.39 NIg N.
« Independent of the input.

Comparison to mergesort.
* 39% more compares than mergesort.
« Faster than mergesort in practice because of less data movement.

Best case. Number of compares is ~ NlgN.
Worst case. Number of compares is ~ 15 N2.
[ but more likely that lightning bolt strikes computer during execution ]

Quicksort quiz 3

How much extra space does quicksort use?

A. O(l)

B. O(nN)

C. O(N)

D. O(NInN)
E.  Idon't know.

Quicksort properties

Proposition. Quicksort is an in-place sorting algorithm.
Pf.
« Partitioning: constant extra space.
e Depth of recursion: logarithmic extra space (with high probability).

can guarantee logarithmic depth by recurring
on smaller subarray before larger subarray
(but requires using an explicit stack)

Proposition. Quicksort is not stable.
Pf. [ by counterexample ]

B G C A

1 3 B C A
1 3 Bi A G
0 1 A B, C G

Quicksort: practical improvements

Insertion sort small subarrays.
« Like mergesort, quicksort has too much overhead for tiny subarrays.
« Cutoff to insertion sort for = 10 items.

private static void sort(Comparable[] a, int 1o, int hi)

{
if (hi <= To + CUTOFF - 1)
{
Insertion.sort(a, lo, hi);
return;
}

int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);




Quicksort: practical improvements

Median of sample.
« Best choice of pivot item = median.
« Estimate true median by taking median of sample.

* Median-of-3 (random) items.

~ 12/7 N In N compares (14% fewer)
~ 12/35 N In N exchanges (3% more)

private static void sort(Comparable[] a, int 1o, int hi)

{

if (hi <= 10) return;

int median = median0f3(a, 1o, lo + (hi - T10)/2, hi);
swap(a, lo, median);

int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

2.3 QUICKSORT

» selection
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Selection

Goal. Given an array of N items, find the  smallest item.
Ex. Min (k=0), max (k=N - 1), median (k=N/2).

Applications.
« Order statistics.
* Find the "top &."

Use theory as a guide.
« Easy Nlog N upper bound. How?
* Easy N upper bound for k=1,2,3. How?
e Easy N lower bound. Why?

Which is true?
* NlogN lower bound? <«<—— s selection as hard as sorting?

* N upper bound? <«——— is there a linear-time algorithm?

Quick-select

Partition array so that:
« Entry a[j] is in place.
« No larger entry to the left of j.
« No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

public static Comparable select(Comparable[] a, int k)

{
tdRandom.shuffle(a falk] is here
Std [OF i k1 i

int To = 0, hi = a.length - 1; S ) @ =31

while Chi > To0) \

{
int j = partition(a, 1o, hi); =v ‘v‘
if G<k)lo=3j+1; ; n
else if (3 > k) hi = j - 1; To 3
else return a[k];

return a[k];

®

if a[k] is here
set Toto j+1

/

=V




Quick-select: mathematical analysis

Proposition. Quick-select takes expected linear time.

Pf.

Omitted, similar to the analysis of expected running time of quicksort.

There exists a deterministic algorithm with linear running time, but we
don’t use it because the constants are bad.

2.3 QUICKSORT

Algorithms » duplicate keys
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Duplicate keys

Often, purpose of sort is to bring items with equal keys together.
« Sort population by age.
« Remove duplicates from mailing list.
« Sort job applicants by college attended.

Chicago 09:25:52

Typical characteristics of such applications. Chicago 09:03:13
Chicago 09:21:05

« Huge array. Chicago 09:19:46
Chicago 09:19:32

« Small number of key values. Chicago 09:00:00

Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

key

War story (system sort in C)

Bug. A gsort() call that should have taken seconds was taking minutes.

Why is gsort() so slow? ’

At the time, almost all gsort() implementations based on those in:
« Version 7 Unix (1979): quadratic time to sort organ-pipe arrays.
« BSD Unix (1983): quadratic time to sort random arrays of Os and 1s.




Duplicate keys: stop on equal keys

Our partitioning subroutine stops both scans on equal keys.

n G E P A Q B P Y C O U Pz S R

Q. Why not continue scans on equal keys?

n G E P A Q B P Y C O U 4 S R

Quicksort quiz 4

What is the result of partitioning the following array (skip over equal keys)?

D.  Idon't know.

Quicksort quiz 5

What is the result of partitioning the following array (stop on equal keys)?

D.  Idon't know.

A A A
7 8 9
A A A
A A A

A A
14 15
A A
A
A A

Partitioning an array with all equal keys

al]
3 4 5 6 7 8 9 1011 12 13 14 15
A AAAAAAAAAAAAA

»—\
<

> > > (=
>

NN OO ULt s R W W NN e e
~
>
>

A A

9
9 A
8
8 A AAAAAAAAAAAAAAA




Duplicate keys: partitioning strategies

Bad. Don't stop scans on equal keys.
[ ~1 N2 compares when all keys equal ]

BAABABBBCCC AAAAAAAAAAA

Cood. Stop scans on equal keys.
[ ~Nlg N compares when all keys equal ]

BAABABCCBCB AAAAAAAAAAA

Better. Put all equal keys in place. How?
[ ~ N compares when all keys equal ]

AAABBBBBCCC AAAAAAAAAAA

3-way partitioning

Goal. Partition array into three parts so that:
« Entries between 1t and gt equal to the partition item.
« No larger entries to left of 1t.
* No smaller entries to right of gt.

before M
t t
To hi
after ‘ <V ‘ =V >V ‘
t t t t
To 1t gt hi

Dijkstra 3-way partitioning demo

» Let v be partitioning item a[1o].
« Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

It i

n A B X w P P \ P D P C Y

0

lo

invariant

Dijkstra 3-way partitioning demo

» Let v be partitioning item a[1o].

« Scan i from left to right.
- (a[il < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[il > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

It i

n A B X w P P \ P D P C Y

0

lo




Dijkstra 3-way partitioning demo

Dijkstra 3-way partitioning demo

Let v be partitioning item a[lo].
Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

It i gt
¥ ' '
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» Let v be partitioning item a[1o].
« Scan i from left to right.
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3-way quicksort: visual trace
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2.3 QUICKSORT

Algorithms

» system sorts

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Sorting applications

Sorting algorithms are essential in a broad variety of applications:
« Sort a list of names.
« Organize an MP3 library.
<«—— obvious applications

« Display Google PageRank results.
« List RSS feed in reverse chronological order.

« Find the median.
« ldentify statistical outliers.

problems become easy once
— X
items are in sorted order

e Binary search in a database.
« Find duplicates in a mailing list.

« Data compression.
» Computer graphics.
p grap <«—— non-obvious applications

« Computational biology.
« Load balancing on a parallel computer.

Dual-pivot quicksort

Use two partitioning items p; and p» and partition into three subarrays:
» Keys less than p.
« Keys between p; and p..
* Keys greater than p..

< pi p1 > p1 and < p p2 > p2
1 0 0 0
To 1t gt hi

Recursively sort three subarrays.

degenerates to Dijkstra's 3-way partitioning

Note. Skip middle subarray if p; = p».




Dual-pivot quicksort

Use two partitioning items p; and p> and partition into three subarrays:
« Keys less than p;.
« Keys between p; and p..
* Keys greater than p,.

< pi p1 > p1 and < p» P2 > p2
U t 0 0
Tlo 1t gt hi

Now widely used. Java 7, Python unstable sort, Android, ...

System sort in Java 7

Arrays.sort().
« Has one method for objects that are ComparabTe. (
« Has an overloaded method for each primitive type. () Java
* Has an overloaded method for use with a Comparator. <——=
» Has overloaded methods for sorting subarrays.

Algorithms.
« Dual-pivot quicksort for primitive types.
» Timsort for reference types.

Q. Why use different algorithms for primitive and reference types?

Bottom line. Use the system sort!

Review: three types of averages in measuring efficiency of algorithms

Average-case. Average over all possible inputs.
Expected.*  Average over all possible values of RNG.
Worst-case over all possible inputs.
Amortized.  Average over a sequence of inputs.
(Must be stateful, such as a data structure.)

Example 1. The running time of quicksort is O(V1g N). But if we

omitted the shuffling step, only the running time would be O(N1g N).

Example 2. The running time of selection is O(N) with quick-select,

but if we only care about the running time, we’d first sort the array.

*Some people use average-case to refer to both.

If you do, it’s important to always know which one you're talking about.

Quicksort quiz 6

The running time of quicksort is O(V1g N). But if we omitted the

shuffling step, only the running time would be O(N Ig N).

A. Average-case, expected
B. Expected, average-case
C. Amortized, expected
D. Expected, amortized

E. Idon't know.
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Quicksort quiz 7

The running time of selection is O(V) with quick-select, but if we only
care about the running time, we’d first sort the array.

Average-case, amortized

= >

Amortized, average-case

n

Amortized, expected

o

Expected, amortized

a0

I don't know.

Sorting summary

erage
Y e e e
insertion

v v N N2 B N2

v B NIgN NlgN NligN

v N NigN  NIgN
2NInN
v 2
Nigh (expected) AN
v N 2NInN VN2
(expected)

v v N NigN  Nlgh

N exchanges
use for small N
or partially ordered

Nlog N guarantee;
stable

improves mergesort
when preexisting order

Nlog N probabilistic guarantee;
fastest in practice
improves quicksort

when duplicate keys

holy sorting grail
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