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2.3  QUICKSORT

‣ quicksort 
‣ selection 

‣ duplicate keys 

‣ system sorts
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Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure. 

・Full scientific understanding of their properties has enabled us  
to develop them into practical system sorts. 

・Quicksort honored as one of top 10 algorithms of 20th century 
in science and engineering. 

 
Mergesort.  [last lecture] 

 
 
 
 
Quicksort.  [this lecture]

...

...
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Quicksort t-shirt
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Quicksort t-shirt
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Quicksort overview

Step 1.  Shuffle the array. 

Step 2.  Partition the array so that, for some j  

・Entry a[j] is in its eventual sorted position. 

・No larger entry to the left of j. 

・No smaller entry to the right of j. 

Step 3.  Sort each subarray recursively.

Q  U  I  C  K  S  O  R  T  E  X  A  M  P  L  E

K  R  A  T  E  L  E  P  U  I  M  Q  C  X  O  S

E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S

A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S

A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X

A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X

not greater not less

partitioning item

input

shuffle

partition

sort left

sort right

result

Quicksort overview
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Quicksort overview

Q U I C K S O R T E X A M P L E

input
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Quicksort overview

Step 1.  Shuffle the array.

Q U I C K S O R T E X A M P L E

shuffle
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Quicksort overview

Step 1.  Shuffle the array.

QU I CK SOR T E XA MPLE

shuffle
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Quicksort overview

Step 2.  Partition the array so that, for some j  

・Entry a[j] is in place. 

・No larger entry to the left of j. 

・No smaller entry to the right of j.

QU I CK SOR T E XA MPLE

partition
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Quicksort overview

Step 2.  Partition the array so that, for some j  

・Entry a[j] is in place. 

・No larger entry to the left of j. 

・No smaller entry to the right of j.

QUIC K SORTE XA MPLE

partition

<= K >= K
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Quicksort overview

Step 3.  Sort each subarray recursively.

QUIC K SORTE XA MPLE

sort the left subarray
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Quicksort overview

Step 3.  Sort each subarray recursively.

QUIC K SORTE XA MPLE

sort the left subarray

sorted
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Quicksort overview

Step 3.  Sort each subarray recursively.

QUIC K SORTE XA MPLE

sort the right subarray

sorted
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Quicksort overview

Step 3.  Sort each subarray recursively.

Q UIC K SO R TE XA M PLE

sort the right subarray

sortedsorted

16

Quicksort overview

Q UIC K SO R TE XA M PLE

sorted array



・Invented quicksort to translate Russian into English. 
[ but couldn't explain his algorithm or implement it! ] 

・Learned Algol 60 (and recursion). 

・Implemented quicksort.

Tony Hoare

17

Tony Hoare 
1980 Turing Award
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A L G O R I T H M  61 
P R O C E D U R E S  F O R  R A N G E  A R I T H M E T I C  
ALLAN GIBB* 
U n i v e r s i t y  of A l b e r t a ,  C a l g a r y ,  A l b e r t a ,  C a n a d a  

b e g i n  
p r o c e d u r e  RANGESUM (a, b, c, d, e, f); 

rea l  a , b , c , d , e , f ;  
c o m m e n t  The term "range number"  was used by P. S. Dwyer, 
Linear Computations (Wiley, 1951). Machine procedures for 
range ari thmetic were developed about 1958 by Ramon Moore, 
"Automatic  Error  Analysis in Digital Computa t ion ,"  LMSD 
Report  48421, 28 Jan. 1959, Lockheed Missiles and Space Divi- 
sion, Palo Alto, California, 59 pp. If a _< x -< b and c ~ y ~ d, 
then RANGESUM yields an interval  [e, f] such tha t  e =< (x + y) 

f. Because of machine operation (truncation or rounding) the 
machine sums a -4- c and b -4- d may not provide safe end-points  
of the output  interval.  Thus RANGESUM requires a non-local 
real procedure ADJUSTSUM which will compensate for the 
machine ari thmetic.  The body of ADJUSTSUM will be de- 
pendent  upon the type of machine for which it is wri t ten and so 
is not given here. (An example, however, appears below.) I t  
is assumed tha t  ADJUSTSUM has as parameters  real v and w, 
and integer i, and is accompanied by a non-local real procedure 
CORRECTION which gives an upper bound to the magnitude 
of the error involved in the machine representat ion of a number. 
The output  ADJUSTSUM provides the left end-point  of the 
output  interval of RANGESUM when ADJUSTSUM is called 
with i = --1, and the right end-point  when called with i = 1 
The procedures RANGESUB, RANGEMPY,  and RANGEDVD 
provide for the remaining fundamental  operations in range 
ari thmetic.  RANGESQR gives an interval within which the 
square of a range nmnber  must lie. RNGSUMC, RNGSUBC, 
RNGMPYC and RNGDVDC provide for range ari thmetic with 
complex range arguments,  i.e. the real and imaginary parts 
are range numbers~ 
b e g i n  

e :=  ADJUSTSUM (a, c, - 1 ) ;  
f : =  ADJUSTSUM (b, d, 1) 

end  RANGESUM; 
p r o c e d u r e  RANGESUB (a, b, c, d, e, f) ; 

real  a, b ,c ,  d ,e ,  f; 
c o m m e n t  RANGESUM is a non-local procedure; 
b e g i n  

RANGESUM (a, b, - d ,  --c, e, f) 
end  RANGESUB ; 
p r o c e d u r e  RANGEMPY (a, b, c, d, e, f); 

real  a, b, c, d, e, f; 
c o m m e n t  ADJUSTPROD,  which appears at the end of this 
procedure, is analogous to ADJUSTSUM above and is a non- 
local real procedure. MAX and MIN find the maximum and 
minimum of a set of real numbers and are non-local; 
b e g i n  

rea l  v, w; 
i f  a < 0 A  c => 0 t h e n  

1: b e g i n  
v : = c ;  c : = a ;  a : = v ;  w : = d ;  d : = b ;  b : = w  

end  1; 
i f  a => O t h e n  

2: b e g i n  
i f  c >= 0 t h e n  

3 :beg in  
e : =  a X e ; f  :=  b X d ; g o t o 8  

end  3 ; 
e : = b X c ;  
i f d  ~ 0 t h e n  

4: b e g i n  
f : = b X d ;  g o t o 8  

end  4; 
f : = a X d ;  g o t o 8  

5: end  2; 
i f b  > 0 t h e n  

6: b e g i n  
i f  d > 0 t h e n  
b e g i n  

e :=  MIN(a  X d, b X c); 
f : =  MAX(a X c , b  X d); go t o 8  

e n d  6; 
e : =  b X  c; f : =  a X  c; go t o 8  

e n d  5; 
f : = a X c ;  
i f  d _-< O t h e n  

7: b e g i n  
e : = b X d ;  g o t o 8  

e n d  7 ; 
e : = a X d ;  

8: e : =  ADJUSTPROD (e, - 1 ) ;  
f := ADJUSTPROD (f, 1) 

end  RANGEMPY;  
p r o c e d u r e  RANGEDVD (a, b, c, d, e, f) ; 

real  a, b, c, d, e, f; 
c o m m e n t  If the range divisor includes zero the program 
exists to a non-local label "zerodvsr" .  RANGEDVD assumes a 
non-local real procedure ADJUSTQUOT which is analogous 
(possibly identical) to ADJUSTPROD;  
b e g i n  

i f  c =< 0 A d ~ 0 t h e n  go to zer0dvsr; 
i f  c < 0 t h e n  

1: b e g i n  
i f b  > 0 t h e n  

2: b e g i n  
e : =  b /d ;  go t o 3  

e n d  2; 
e : =  b /c ;  

3: i f a  -->_ 0 t h e n  
4: b e g i n  

f : =  a /c ;  go to  8 
e n d  4; 
f : =  a /d ;  go to  8 

en d  1 ; 
i f  a < 0 t h e n  

5: b e g i n  
e : =  a/c;  go t o 6  

en d  5 ; 
e : =  a /d ;  

6: i f b  > 0 t h e n  
7: b e g i n  

f : =  b/c ;  go t o 8  
e n d  7 ; 
f : =  b /d ;  

8: e :=  ADJUSTQUOT (e, - 1 ) ;  f : =  ADJUSTQUOT (f,1) 
en d  RANGEDVD ; 
p r o c e d u r e  RANGESQR (a, b, e, f); 

rea l  a, b, e, f; 
c o m m e n t  ADJUSTPROD is a non-10cal procedure; 
b e g i n  

i f  a < 0 t h e n  

C o m m u n i c a t i o n s  o f  t h e  &CM 319 

n u m b e r ) .  9.9 X 10 45 is u sed  to r e p r e s e n t  inf in i ty .  I m a g i n a r y  
v a l u e s  of x m a y  no t  be n e g a t i v e  a n d  reM v a l u e s  of x m a y  n o t  be 
s m a l l e r  t h a n  1. 

Va lues  of Qd~'(x) m a y  be ca l cu l a t ed  eas i ly  by h y p e r g e o m e t r i c  
ser ies  if x is n o t  too  sma l l  no r  (n - m)  too  large.  Q~m(x) can  be 
c o m p u t e d  f rom an  a p p r o p r i a t e  se t  of v a l u e s  of Pnm(X) if X is nea r  
1.0 or ix is n ea r  0. Loss  of s ign i f i can t  d ig i t s  occurs  for  x as sma l l  as 
1.1 if n is l a rge r  t h a n  10. Loss  of s ign i f i can t  d ig i t s  is a m a j o r  diffi- 
cu l t y  in u s i n g  finite p o l y n o m i M  r e p r e s e n t a t i o n s  also if n is l a rge r  
t h a n  m.  H ow eve r ,  Q L E G  h a s  been  t e s t e d  in reg ions  of x a n d  n 
b o t h  large  a n d  smal l ;  
p r o c e d u r e  Q L E G ( m ,  n m a x ,  x, ri, R,  Q);  v a l u e  In, n m a x ,  x, ri ;  

r e a l  In, m n a x ,  x, ri ;  r e a l  a r r a y  R ,  Q; 
b e g i n  r e a l  t ,  i, n,  q0, s ;  

n : =  20; 
i f  n m a x  > 13 t h e n  

n : =  n m a x  + 7 ;  
i f  ri = 0 t h e n  

b e g i n  i f m  = 0 t h e n  
Q[0] : =  0.5 X 10g((x + 1 ) / (x  - 1)) 
e l s e  

b e g i n  t : =  - - 1 . 0 / s q r t ( x  X x - -  1); 
q0 : =  0; 
Q[O] : = t ;  
fo r  i : = 1 s t e p  1 u n t i l  m d o  

b e g i n  s : =  ( x + x ) X ( i - 1 ) X t  
×Q [ 0 ] +  ( 3 i - i× i - 2 )×q 0 ;  
q0 : =  Q[0]; 
Q[0] : =  s e n d  e n d ;  

i f  x = 1 t h e n  
Q[0] : =  9.9 I" 45; 

R[n  + 1] : =  x - s q r t ( x  X x - 1); 
for i : =  n s t e p  --1 u n t i l  1 d o  

R[i] : =  (i + m ) / ( ( i  + i + 1) X x 
+ ( m - i -  1) X R [ i + l ] ) ;  

go  to  t h e  e n d ;  
i f  m = 0 t h e n  

b e g i n  i f  x < 0.5 t b e n  
Q[0] : =  a r c t a n ( x )  - 1.5707963 e l s e  
Q[0] : =  - a r e t a n ( 1 / x ) e n d  e l s e  

b e g i n  t : =  1 / s q r t ( x  X x + 1); 
q0 : =  0; 
q[0] := t; 
f o r  i : = 2 s t e p  1 u n t i l  m do  

b e g i n  s : =  (x + x) X (i -- 1) X t X Q[0I 
+ ( 3 i + i X  i -- 2) × q0; 
qO : =  Q[0]; 
Q[0] := s e n d  e n d ;  

R[n  + 1] : =  x - s q r t ( x  × x + 1); 
for  i : =  n s t e p  - 1 u n t i l  1 do  

R[i] : =  (i + m ) / ( ( i  -- m + 1) × R[i  + 1] 
- - ( i + i +  1) X x);  

f o r  i : = 1 s t e p  2 u n t i l  n m a x  do  
Ril l  : =  -- Ri l l ;  

t h e :  f o r  i : = 1 s t e p  1 u n t i l  n n m x  d o  
Q[i] : =  Q[i - 1] X R[i] 

e n d  Q L E G ;  

* T h i s  p r o c e d u r e  was  deve loped  in p a r t  u n d e r  t he  s p o n s o r s h i p  
of t he  Air  Force  C a m b r i d g e  R e s e a r c h  Cen t e r .  

ALGORITHM 63 
PARTITION 
C. A. R. HOARE 
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng. 
p r o c e d u r e  p a r t i t i o n  ( A , M , N , I , J ) ;  v a l u e  M , N ;  

a r r a y  A; i n t e g e r  M , N , 1 , J ;  

c o n u n e n t  I and  J are  o u t p u t  va r i ab le s ,  a n d  A is t h e  a r r a y  (wi th  
s u b s c r i p t  b o u n d s  M : N )  wh ich  is o p e r a t e d  u p o n  by  th i s  p rocedure .  
P a r t i t i o n  t a k e s  t h e  va lue  X of a r a n d o m  e l e m e n t  of the  a r r a y  A, 
a n d  r e a r r a n g e s  t he  va lue s  of t he  e l e m e n t s  of t he  a r r a y  in s u c h  a 
way  t h a t  t he r e  ex is t  i n t ege r s  I a n d  J w i t h  t he  fo l lowing p rope r t i e s  : 

M _-< J < I =< N p r o v i d e d M  < N 
A[R] =< X f o r M  =< R _-< J 
A[R] = X f o r J  < R < I 
A[R] ~ X f o r  I =< R ~ N 

T h e  p rocedu re  uses  an  in tege r  p rocedu re  r a n d o m  (M,N)  wh ich  
chooses  e q u i p r o b a b l y  a r a n d o m  in t ege r  F b e t w e e n  M an d  N,  a n d  
also a p rocedu re  exchange ,  wh ich  e x c h a n g e s  t he  va lue s  of i t s  two  
p a r a m e t e r s  ; 
b e g i n  r e a l  X ;  i n t e g e r  F;  

F : =  r a n d o m  ( M , N ) ;  X : =  A[F]; 
I : = M ;  J : = N ;  

up :  for  I : = I s t e p  1 u n t i l  N d o  
i f  X < A [I] t h e n  g o  to  do wn;  

I : = N ;  
down:  f o r J  : =  J s t e p  --1 u n t i l  M d o  

i f  A [ J ] < X  t h e n  g o  t o  c h a n g e ;  
J : = M ;  

change :  i f  I < J t h e n  b e g i n  e x c h a n g e  (A[IL A[J]) ;  
I : =  I +  1 ; J : =  J - 1; 
g o  to  up  

e n d  
e l s e  i f  [ < F t h e n  b e g i n  e x c h a n g e  (A[IL A[F])  i 

I : = I + l  
e n d  

e l s e  i f  F < J t l l e n  b e g i n  e x c h a n g e  (A[F], A[J]) ; 
J : = J - 1  

e n d  ; 
e n d  p a r t i t i o n  

ALGORITHM 64 
QUICKSORT 
C. A. R. HOARE 
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng. 
p r o c e d u r e  q u i c k s o r t  ( A , M , N ) ;  v a l u e  M , N ;  

a r r a y  A; i n t e g e r  M , N ;  
c o m m e n t  Q u i c k s o r t  is a v e r y  f a s t  a n d  c o n v e n i e n t  m e t h o d  of 
s o r t i n g  an  a r r a y  in t he  r a n d o m - a c c e s s  s tore  of a c o m p u t e r .  T h e  
en t i r e  c o n t e n t s  of t he  s tore  m a y  be so r t ed ,  s ince  no e x t r a  space  is  
r equ i red .  T h e  ave rage  n u m b e r  of c o m p a r i s o n s  m a d e  is 2 ( M - - N )  In 
( N - - M ) ,  a n d  t he  ave r age  n m n b e r  of e x c h a n g e s  is one s ix th  th i s  
a m o u n t .  Su i t ab le  r e f inemen t s  of th i s  m e t h o d  will be des i rab le  for  
i t s  i m p l e m e n t a t i o n  on any  ac tua l  c o m p u t e r ;  
b e g i n  i n t e g e r  1,J ; 

i f  M < N t h e n  b e g i n  p a r t i t i o n  ( A , M , N , I , J ) ;  
q u i c k s o r t  (A,M,J )  ; 
q u i c k s o r t  (A, I,  N)  

e n d  
e n d  q u i e k s o r t  

ALGORITHM 65 
FIND 
C. A. R. HOARE 
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng. 
p r o c e d u r e  f ind ( A , M , N , K ) ;  v a l u e  M , N , K ;  

a r r a y  A; i n t e g e r  M , N , K ;  
c o m m e n t  F i n d  will a s s ign  to A [K] t he  va lue  wh ich  it  would  
h a v e  if t he  a r r a y  A [M:N]  h a d  been  sor ted .  T h e  a r r a y  A will be  
p a r t l y  so r t ed ,  a n d  s u b s e q u e n t  en t r i e s  will be f a s t e r  t h a n  t h e  f i rs t ;  

C o m m u n i c a t i o n s  o f  t h e  A C M  321 
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・Invented quicksort to translate Russian into English. 

・[ but couldn't explain his algorithm or implement it! ] 

・Learned Algol 60 (and recursion). 

・Implemented quicksort.

Tony Hoare
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“ I call it my billion-dollar mistake.  It was the invention of the null
   reference in 1965…  This has led to innumerable errors,
   vulnerabilities, and system crashes, which have probably caused
   a billion dollars of pain and damage in the last forty years. ”

Tony Hoare 
1980 Turing Award

・Refined and popularized quicksort. 

・Analyzed many versions of quicksort.

Bob Sedgewick
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Implementing 
Quicksort Programs 
Robert Sedgewick 
Brown University 

This paper is a practical study of how to implement 
the Quicksort sorting algorithm and its best variants on 
real computers, including how to apply various code 
optimization techniques. A detailed implementation 
combining the most effective improvements to 
Quicksort is given, along with a discussion of how to 
implement it in assembly language. Analytic results 
describing the performance of the programs are 
summarized. A variety of special situations are 
considered from a practical standpoint to illustrate 
Quicksort's wide applicability as an internal sorting 
method which requires negligible extra storage. 

Key Words and Phrases: Quicksort, analysis of 
algorithms, code optimization, sorting 

CR Categories: 4.0, 4.6, 5.25, 5.31, 5.5 

Introduction 

One of the most widely studied practical problems in 
computer science is sorting: the use of a computer to put 
files in order. A person wishing to use a computer to sort 
is faced with the problem of determining which of the 
many available algorithms is best suited for his purpose. 
This task is becoming less difficult than it once was for 
three reasons. First, sorting is an area in which the 
mathematical analysis of algorithms has been particu- 
larly successful: we can predict the performance of many 
sorting methods and compare them intelligently. Second, 
we have a great deal of experience using sorting algo- 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
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otherwise, or to republish, requires a fee and/or specific permission. 

This work was supported in part by the Fannie and John Hertz 
Foundation and in part by NSF Grants. No. GJ-28074 and MCS75- 
23738. 

Author's address: Division of Applied Mathematics and Computer 
Science Program, Brown University, Providence, RI 02912. 
© 1978 ACM 0001-0782/78/1000-0847 $00.75 
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rithms, and we can learn from that experience to separate 
good algorithms from bad ones. Third, if the tile fits into 
the memory of the computer, there is one algorithm, 
called Quicksort, which has been shown to perform well 
in a variety of situations. Not only is this algorithm 
simpler than many other sorting algorithms, but empir- 
ical [2, ll ,  13, 21] and analytic [9] studies show that 
Quicksort can be expected to be up to twice as fast as its 
nearest competitors. The method is simple enough to be 
learned by programmers who have no previous experi- 
ence with sorting, and those who do know other sorting 
methods should also find it profitable to learn about 
Quicksort. 

Because of its prominence, it is appropriate to study 
how Quicksort might be improved. This subject has 
received considerable attention (see, for example, [1, 4, 
11, 13, 14, 18, 20]), but few real improvements have been 
suggested beyond those described by C.A.R. Hoare, the 
inventor of Quicksort, in his original papers [5, 6]. Hoare 
also showed how to analyze Quicksort and predict its 
running time. The analysis has since been extended to 
the improvements that he suggested, and used to indicate 
how they may best be implemented [9, 15, 17]. The 
subject of the careful implementation of Quicksort has 
not been studied as widely as global improvements to 
the algorithm, but the savings to be realized are as 
significant. The history of Quicksort is quite complex, 
and [15] contains a full survey of the many variants 
which, have been proposed. 

The purpose of this paper is to describe in detail how 
Quicksort can best be implemented to handle actual 
applications on real computers. A general description of 
the algorithm is followed by descriptions of the most 
effective improvements that have been proposed (as 
demonstrated in [15]). Next, an implementation of 
Quicksort in a typical high level language is presented, 
and assembly language implementation issues are con- 
sidered. This discussion should easily translate to real 
languages on real machines. Finally, a number of special 
issues are considered which may be of importance in 
particular sorting applications. 

This paper is intended to be a self-contained overview 
of the properties of Quicksort for use by those who need 
to actually implement and use the algorithm. A compan- 
ion paper [17] provides the analytical results which su- 
port much of the discussion presented here. 

The Algofithm 

Quicksort is a recursive method for sorting an array 
A[1], A[2] .. . . .  A[N] by first "partitioning" it so that the 
following conditions hold: 

(i) Some key v is in its final position in the array. (If it 
is thejth smallest, it is in position A[j].) 

(ii) All elements to the left of A[j] are less than or equal 
to it. (These elements A [ 1 ], A [2] . . . . .  A [ j  - 1 ] are 
called the "left subtile.") 

Communications October 1978 
of Volume 21 
the ACM Number 10 
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Summary. The Quicksort sorting algorithm and its best variants are presented 
and analyzed. Results are derived which make it possible to obtain exact formulas de- 
scribing the total expected running time of particular implementations on real com- 
puters of Quick, sort and an improvement called the median-of-three modification. 
Detailed analysis of the effect of an implementation technique called loop unwrapping 
is presented. The paper is intended not only to present results of direct practical utility, 
but also to illustrate the intriguing mathematics which arises in the complete analysis 
of this important algorithm. 

1. Introduction 

In t96t-62 C.A.R. Hoare presented a new algorithm called Quicksort [7, 8] 
which is suitable for putting files into order by computer. This method combines 
elegance and efficiency, and it remains today the most useful general-purpose 
sorting method for computers. The practical utility of the algorithm has meant 
not only that  it has been sfibjected to countless modifications (though few real 
improvements have been suggested beyond those described by Hoare), but also 
that  it has been used .in countless applications, often to sort very large, f i les .  
Consequently, it is important to be able to estimate how long an implementation 
of Quicksort can be expected to run, in order to be able to compare variants or 
estimate expenses. Fortunately, as we shall see, this is an algorithm which can be 
analyzed. (Hoare recognized this, and gave some analytic results in [8].) I t  is 
possible to derive exact formulas describing the average performance of real 
implementations of the algorithm. 

The history of Quicksort is quite complex, and a full survey of the many variants 
which have been proposed is given in [t 7]. In addition, [t 7] gives analytic results 
describing many of the improvements which have been suggested for the purpose 
of determining which are the most effective. There are many examples in [~ 7] 
which illustrate that  the simplicity of Quicksort is deceiving. The algorithm has 
hidden subtleties which can have significant effects on performance. Furthermore, 
as we shall see, simple changes to the algorithm or its implementation can radically 
change the analysis. In this paper, we shall consider in detail how practical 
implementations of the best versions of Quicksort may be analyzed. 

In this paper, we will deal with the analysis of: (i) the basic Quicksort algo- 
ri thm; (ii) an improvement called the "median-of-three" modification which 
reduces the average number of comparisons required; and (iii) an implementation 
technique called "loop unwrapping" which reduces the amount of overhead per 
comparison. These particular methods not only represent the most effective vari- 

* This work was supported in part by the Fannie and John Hertz Foundation, and 
in part by the National Science Foundation Grants No. GJ-28074 and MCS75-23738. 
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Quicksort partitioning: first try

1. Pick a[0] as the partitioning element 

2. Create an auxiliary array aux 

3. Scan the array and copy each item less than a[0] to aux 

4. Scan the array and copy each item not less than a[0] to aux 

5. Copy aux back to a 

Problems 

・Requires space for auxiliary array 

・Requires multiple scans of the array
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Quicksort partitioning demo

Repeat until i and j pointers cross. 

・Scan i from left to right so long as (a[i] < a[lo]). 

・Scan j from right to left so long as (a[j] > a[lo]). 

・Exchange a[i] with a[j].

lo
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Quicksort partitioning demo

Repeat until i and j pointers cross. 

・Scan i from left to right so long as (a[i] < a[lo]). 

・Scan j from right to left so long as (a[j] > a[lo]). 
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Quicksort partitioning demo

Repeat until i and j pointers cross. 

・Scan i from left to right so long as (a[i] < a[lo]). 

・Scan j from right to left so long as (a[j] > a[lo]). 

・Exchange a[i] with a[j]. 

When pointers cross. 

・Exchange a[lo] with a[j].

lo
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hij

partitioned!
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Quicksort:  Java code for partitioning

private static int partition(Comparable[] a, int lo, int hi) 
{ 
   int i = lo, j = hi+1; 
   while (true) 
   { 
      while (less(a[++i], a[lo])) 
         if (i == hi) break; 

      while (less(a[lo], a[--j])) 
         if (j == lo) break; 
      
      if (i >= j) break; 
      exch(a, i, j); 
   } 

   exch(a, lo, j); 
   return j; 
} 

swap with partitioning item

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index of item now known to be in place
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Are the array bounds checks in the previous slide necessary? 

A.  Yes 

B.  No 

C.  Both of the above 

D.  Neither of the above

E.  I don't know.

Trick question! One of them is necessary and the other isn’t.
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Quicksort quiz 1

How many compares to partition an array of length N ? 

A.  ~ ¼ N 

B.  ~ ½ N 

C.  ~ N 

D.  ~ N lg N

E.  I don't know. 
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Quicksort quiz 2

M A B C D E V W X Y Z

0 1 2 3 4 5 6 7 8 9 10

scan until ≥ M

scan until ≤ M

N+1 compares in worst case
(E and V are compared with M twice)
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Quicksort:  Java implementation

public class Quick 
{ 
   private static int partition(Comparable[] a, int lo, int hi) 
   {  /* see previous slide */  } 

   public static void sort(Comparable[] a) 
   { 
      StdRandom.shuffle(a); 
      sort(a, 0, a.length - 1); 
   } 

   private static void sort(Comparable[] a, int lo, int hi) 
   { 
      if (hi <= lo) return; 
      int j = partition(a, lo, hi); 
      sort(a, lo, j-1); 
      sort(a, j+1, hi); 
  } 
} 

shuffle needed 
for performance 

guarantee 
(stay tuned)

Quicksort trace
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 lo   j  hi   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
              Q  U  I  C  K  S  O  R  T  E  X  A  M  P  L  E
              K  R  A  T  E  L  E  P  U  I  M  Q  C  X  O  S 
  0   5  15   E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S  
  0   3   4   E  C  A  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  0   2   2   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  0   0   1   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  1       1   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  4       4   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  6   6  15   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  7   9  15   A  C  E  E  I  K  L  M  O  P  T  Q  R  X  U  S  
  7   7   8   A  C  E  E  I  K  L  M  O  P  T  Q  R  X  U  S  
  8       8   A  C  E  E  I  K  L  M  O  P  T  Q  R  X  U  S  
 10  13  15   A  C  E  E  I  K  L  M  O  P  S  Q  R  T  U  X  
 10  12  12   A  C  E  E  I  K  L  M  O  P  R  Q  S  T  U  X  
 10  11  11   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
 10      10   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
 14  14  15   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
 15      15   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X 
  
              A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X 

no partition
 for subarrays

 of size 1

initial values

random shuffle

result

Quicksort trace (array contents after each partition)



Quicksort animation
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http://www.sorting-algorithms.com/quick-sort

50 random items

in order

current subarray

algorithm position

not in order
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Quicksort:  implementation details

Partitioning in-place.  Using an extra array makes partitioning easier  
(and stable), but is not worth the cost. 

 
Terminating the loop.  Testing whether the pointers cross is trickier 
than it might seem. 

 
Equal keys.  When duplicates are present, it is (counter-intuitively) 
better to stop scans on keys equal to the partitioning item's key. 

 
Preserving randomness.  Shuffling is needed for performance guarantee. 

Equivalent alternative.  Pick a random partitioning item in each subarray.

stay tuned
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Quicksort:  empirical analysis (1961)

Running time estimates: 

・Algol 60 implementation. 

・National-Elliott 405 computer.

Elliott 405 magnetic disc
(16K words)

sorting N 6-word items with 1-word keys
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Quicksort:  best-case analysis

Best case.  Number of compares is ~ N lg N.

random shuffle

initial values



Worst case.  Number of compares is ~ ½ N 2 .
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Quicksort:  worst-case analysis

random shuffle

initial values

Due to bad randomness, 
not bad input

Proposition.  The expected number of compares CN to quicksort an array of  
N distinct keys is ~ 2N ln N (and the number of exchanges is ~ ⅓ N ln N ). 

Pf.  CN satisfies the recurrence C0 = C1 = 0 and for N  ≥  2: 

・Multiply both sides by N and collect terms: 

・Subtract from this equation the same equation for N - 1:  

・Rearrange terms and divide by N (N + 1):
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Quicksort: analysis of expected running time

CN

N + 1
=

CN�1

N
+

2
N + 1

NCN = N(N + 1) + 2(C0 + C1 + . . . + CN�1)

NCN � (N � 1)CN�1 = 2N + 2CN�1

CN = (N + 1) +

�
C0 + CN�1

N

�
+

�
C1 + CN�2

N

�
+ . . . +

�
CN�1 + C0

N

�
partitioning

partitioning probability

left right

・Repeatedly apply previous equation: 

・Approximate sum by an integral: 

・Finally, the desired result:
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Quicksort:  analysis of expected running time

CN � 2(N + 1) lnN ⇥ 1.39N lg N
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Quicksort:  worst case is exponentially unlikely

Probability (# compares > 0.1 N2) < 1/2N for large N. 

Things more likely than quicksort being quadratic on a million-item array: 

・Lightning bolt strikes computer during execution. 

・Get trampled by a herd of zebra above the Arctic Circle, while being hit 

by a meteor. 

・I become the next president of these United States. 

 
The probability of needing even 2N lg N compares (instead of ~ 1.39 N lg N) is 

negligible for large N. 

 
 
 
 
Bottom line.  Assuming good randomness and no implementation bugs, 
this is as good as a worst-case ~ 1.39 N lg N guarantee.

Important caveats!
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Quicksort:  summary of performance characteristics

Quicksort is a randomized algorithm. 

・Guaranteed to be correct. 

・Running time depends on random shuffle.  

 
Expected running time.  

・Expected number of compares is ~ 1.39 N lg N. 

・Independent of the input. 

 
Comparison to mergesort. 

・39% more compares than mergesort. 

・Faster than mergesort in practice because of less data movement. 

 
Best case.  Number of compares is ~  N lg N. 
Worst case.  Number of compares is ~  ½ N 2. 
[ but more likely that lightning bolt strikes computer during execution ]

How much extra space does quicksort use? 

A.  Θ(1) 

B.  Θ(ln N) 

C.  Θ(N) 

D.  Θ(N ln N)

E.  I don't know. 
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Quicksort quiz 3

Proposition.  Quicksort is an in-place sorting algorithm. 

Pf. 

・Partitioning:  constant extra space. 

・Depth of recursion:  logarithmic extra space (with high probability). 

 
 
 
 
Proposition.  Quicksort is not stable. 

Pf.  [ by counterexample ]
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Quicksort properties

i j 0 1 2 3

B1 C1 C2 A1

1 3 B1 C1 C2 A1

1 3 B1 A1 C2 C1

0 1 A1 B1 C2 C1

can guarantee logarithmic depth by recurring 
on smaller subarray before larger subarray 

(but requires using an explicit stack)

Insertion sort small subarrays. 

・Like mergesort, quicksort has too much overhead for tiny subarrays. 

・Cutoff to insertion sort for ≈ 10 items.

 private static void sort(Comparable[] a, int lo, int hi) 
 { 
    if (hi <= lo + CUTOFF - 1) 
    { 
       Insertion.sort(a, lo, hi); 
       return; 
    } 
    int j = partition(a, lo, hi); 
    sort(a, lo, j-1); 
    sort(a, j+1, hi); 
 }

60

Quicksort:  practical improvements
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Quicksort:  practical improvements

Median of sample. 

・Best choice of pivot item = median. 

・Estimate true median by taking median of sample. 

・Median-of-3 (random) items.

~  12/7   N ln N compares (14% fewer)  
~  12/35 N ln N exchanges (3% more)

 private static void sort(Comparable[] a, int lo, int hi) 
 { 
    if (hi <= lo) return; 

    int median = medianOf3(a, lo, lo + (hi - lo)/2, hi); 
    swap(a, lo, median); 

    int j = partition(a, lo, hi); 
    sort(a, lo, j-1); 
    sort(a, j+1, hi); 
 }

http://algs4.cs.princeton.edu
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Selection

Goal.  Given an array of N items, find the kth smallest item. 

Ex.  Min (k = 0), max (k = N - 1), median (k = N / 2). 
 
Applications. 

・Order statistics. 

・Find the "top k." 
 
Use theory as a guide. 

・Easy N log N upper bound.  How? 

・Easy N upper bound for k = 1, 2, 3.  How? 

・Easy N lower bound.  Why? 

 
Which is true? 

・N log N lower bound? 

・N upper bound?

is selection as hard as sorting?

is there a linear-time algorithm?

Partition array so that: 

・Entry a[j] is in place. 

・No larger entry to the left of j. 

・No smaller entry to the right of j. 

Repeat in one subarray, depending on j; finished when j equals k.
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Quick-select

public static Comparable select(Comparable[] a, int k) 
{ 
    StdRandom.shuffle(a); 
    int lo = 0, hi = a.length - 1; 
    while (hi > lo) 
    { 
       int j = partition(a, lo, hi); 
       if      (j < k) lo = j + 1; 
       else if (j > k) hi = j - 1; 
       else            return a[k]; 
    } 
    return a[k]; 
}
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if a[k] is here 
set hi to j-1

if a[k] is here 
set lo to j+1
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Quick-select:  mathematical analysis

Proposition.  Quick-select takes expected linear time. 

 
Pf. 

Omitted, similar to the analysis of expected running time of quicksort. 

There exists a deterministic algorithm with linear running time, but we 

don’t use it because the constants are bad.
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Duplicate keys

Often, purpose of sort is to bring items with equal keys together. 

・Sort population by age. 

・Remove duplicates from mailing list. 

・Sort job applicants by college attended. 

 Typical characteristics of such applications. 

・Huge array. 

・Small number of key values.

Chicago  09:00:00
Phoenix  09:00:03
Houston  09:00:13
Chicago  09:00:59
Houston  09:01:10
Chicago  09:03:13
Seattle  09:10:11
Seattle  09:10:25
Phoenix  09:14:25
Chicago  09:19:32
Chicago  09:19:46
Chicago  09:21:05
Seattle  09:22:43
Seattle  09:22:54
Chicago  09:25:52
Chicago  09:35:21
Seattle  09:36:14
Phoenix  09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

key
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War story (system sort in C)

Bug.  A qsort() call that should have taken seconds was taking minutes. 

 
 
 
 
 
 
 
 
At the time, almost all qsort() implementations based on those in: 

・Version 7 Unix (1979):  quadratic time to sort organ-pipe arrays. 

・BSD Unix (1983):  quadratic time to sort random arrays of 0s and 1s.

Why is qsort() so slow?
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Duplicate keys:  stop on equal keys

Our partitioning subroutine stops both scans on equal keys. 

 
 
 
 
 
 
 
 
Q.  Why not continue scans on equal keys?

P G E P A Q B P Y C O U P Z S R

scan until ≥ P scan until ≤ P

P G E P A Q B P Y C O U P Z S R

scan until > P scan until < P

What is the result of partitioning the following array (skip over equal keys)?  
 
 
 
 

A.   

 

B.  

C.  

D.   I don't know.
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Quicksort quiz 4

A A A A A A A A A A A A A A A A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

scan until > A scan until < A

What is the result of partitioning the following array (stop on equal keys)?  
 
 
 
 

A.   

 

B.  

C.  

D.   I don't know.
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Quicksort quiz 5

A A A A A A A A A A A A A A A A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

scan until ≥ A scan until ≤ A

Partitioning an array with all equal keys
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Duplicate keys:  partitioning strategies

Bad.  Don't stop scans on equal keys. 
          [ ~ ½ N 2 compares when all keys equal ] 

 
 
 
 
Good.  Stop scans on equal keys. 
          [ ~ N lg N compares when all keys equal ] 

 
 
 
 
Better.  Put all equal keys in place. How? 
          [ ~ N compares when all keys equal ]
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B A A B A B B B C C C        A A A A A A A A A A A

B A A B A B C C B C B        A A A A A A A A A A A

A A A B B B B B C C C        A A A A A A A A A A A

Goal.  Partition array into three parts so that: 

・Entries between lt and gt equal to the partition item. 

・No larger entries to left of lt. 

・No smaller entries to right of gt. 
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3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i
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Dijkstra 3-way partitioning demo

lo

P A B X W P P V P D P C Y Z

hi

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant

・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

lo

P A B X W P P V P D P C Y Z

hi

lt gti



・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

P A B X W P P V P D P C Y Z

lt gti

unknown
equal

・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

A P B X W P P V P D P C Y Z

lt gti

unknown
less equal

・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

A B P X W P P V P D P C Y Z

lt gti

unknownless
equal

・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

A B P Z W P P V P D P C Y X

lt gti

greater
unknownless

equal



・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

A B P Y W P P V P D P C Z X

lt gti

greaterunknownless
equal

・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

A B P C W P P V P D P Y Z X

lt gti

less greaterunknown
equal

・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

A B C P W P P V P D P Y Z X

lt gti

less greaterunknown
equal

・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

A B C P P P P V P D W Y Z X

lt gti

less greaterunknown
equal



・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

A B C P P P P V P D W Y Z X

lt gti

less equal greaterunknown

・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

A B C P P P P V P D W Y Z X

lt gti

less equal greaterunknown

・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

A B C P P P P V P D W Y Z X

lt gti

less equal greaterunknown

・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

A B C P P P P D P V W Y Z X

lt gti

less equal greater
unknown



・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

A B C D P P P P P V W Y Z X

lt gti

less equal greater
unknown

・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

A B C D P P P P P V W Y Z X

lt gt i

equalless greater

・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i

Dijkstra 3-way partitioning demo

lo

A B C D P P P P P V W Y Z X

hilt gt

equalless greater

・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 
– (a[i] == v):  increment i
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Dijkstra 3-way partitioning demo

lo

A B C D P P P P P V W Y Z X

hi

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant
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3-way quicksort:  visual trace

equal to partitioning element

Visual trace of quicksort with 3-way partitioning

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ quicksort 
‣ selection 

‣ duplicate keys 

‣ system sorts

2.3  QUICKSORT

Sorting algorithms are essential in a broad variety of applications: 

・Sort a list of names. 

・Organize an MP3 library. 

・Display Google PageRank results. 

・List RSS feed in reverse chronological order. 

・Find the median.  

・Identify statistical outliers. 

・Binary search in a database. 

・Find duplicates in a mailing list. 

・Data compression. 

・Computer graphics.  

・Computational biology. 

・Load balancing on a parallel computer. 
. . .
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Sorting applications

obvious applications

problems become easy once 
items are in sorted order

non-obvious applications

96

Dual-pivot quicksort

Use two partitioning items p1 and p2 and partition into three subarrays: 

・Keys less than p1. 

・Keys between p1 and p2. 

・Keys greater than p2. 

 
 
 
 
 
 
 
Recursively sort three subarrays. 

 
 
 
Note.  Skip middle subarray if p1 = p2.

<  p1 p1 ≥  p1  and  ≤  p2 p2 >  p2

lo hilt gt

degenerates to Dijkstra's 3-way partitioning
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Dual-pivot quicksort

Use two partitioning items p1 and p2 and partition into three subarrays: 

・Keys less than p1. 

・Keys between p1 and p2. 

・Keys greater than p2. 

 
 
 
 
 
 
 
 
 
 
Now widely used.  Java 7, Python unstable sort, Android, …

<  p1 p1 ≥  p1  and  ≤  p2 p2 >  p2

lo hilt gt
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System sort in Java 7

Arrays.sort(). 

・Has one method for objects that are Comparable. 

・Has an overloaded method for each primitive type. 

・Has an overloaded method for use with a Comparator. 

・Has overloaded methods for sorting subarrays. 

 
Algorithms. 

・Dual-pivot quicksort for primitive types. 

・Timsort for reference types. 

 
 
Q.  Why use different algorithms for primitive and reference types? 

 
 
 
Bottom line.  Use the system sort!

Review: three types of averages in measuring efficiency of algorithms

Average-case. Average over all possible inputs. 

Expected.*      Average over all possible values of RNG.  
                      Worst-case over all possible inputs. 

Amortized.     Average over a sequence of inputs. 
                      (Must be stateful, such as a data structure.) 

 
 
Example 1. The _______ running time of quicksort is O(N lg N). But if we 

omitted the shuffling step, only the _______ running time would be O(N lg N). 

 
Example 2. The _______ running time of selection is O(N) with quick-select, 

but if we only care about the _______ running time, we’d first sort the array. 
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*Some people use average-case to refer to both.  

  If you do, it’s important to always know which one you’re talking about.

The _______ running time of quicksort is O(N lg N). But if we omitted the 

shuffling step, only the _______ running time would be O(N lg N). 

A.  Average-case, expected 

B.  Expected, average-case 

C.  Amortized, expected 

D.  Expected, amortized 

E.  I don't know. 
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Quicksort quiz 6



The _______ running time of selection is O(N) with quick-select, but if we only 

care about the _______ running time, we’d first sort the array. 

A.  Average-case, amortized 

B.  Amortized, average-case 

C.  Amortized, expected 

D.  Expected, amortized 

E.  I don't know. 
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Quicksort quiz 7
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Sorting summary

inplace? stable? best average worst remarks

selection ✔ ½ N 2 ½ N 2 ½ N 2 N exchanges

insertion ✔ ✔ N ¼ N 2 ½ N 2
use for small N 

or partially ordered

merge ✔ ½ N lg N N lg N N lg N
N log N guarantee; 

stable

timsort ✔ N N lg N N lg N
improves mergesort 

when preexisting order

quick ✔ N lg N
2 N ln N

(expected) ½ N 2
N log N probabilistic guarantee; 

fastest in practice

3-way quick ✔ N 2 N ln N
(expected)

½ N 2
improves quicksort 
when duplicate keys

? ✔ ✔ N N lg N N lg N holy sorting grail


