Algorithlns ROBERT SEDGEWICK | KEVIN WAYNE

2.2 MERGESORT

» mergesort
» bottom-up mergesort

» sorting complexity

Algorithms

» divide-and-conquer

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure.
« Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.

* Quicksort honored as one of top 10 algorithms of 20t century
in science and engineering.

Mergesort. [this lecture]
L@ s C

Quicksort. [next lecture]

é%@] & ;5 4 oo

PSA

Make sure to register your iClicker on blackboard

You can miss up to 3 lectures with no penalty without any valid reason
« After that, email Maia with documentation of why you couldn’t attend

2.2 MERGESORT

» mergesort

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Mergesort

Merging demo

Basic plan.
« Divide array into two halves.
« Recursively sort each half.

* Merge two halves.

inpp M E R G E S ORTEXAMPLE

sortlefthalf E E G M O R R S
sort right half A E ELMPTX

mergeresuts A E E E E G L M M O P R R S T X

Mergesort overview

First Draft
ofa

Report on the
EDVAC

John von Neumann

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

mid mid+1

sorted sorted

O

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all E E G M R|A C E R T

copy to auxiliary array

aux[] |

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

aux(] E E G M R A C E R T

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

af]

compare minimum in each subarray

aux] E E G M R C E R T

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

k

compare minimum in each subarray

aux[] E E G M R A C E R T

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A

compare minimum in each subarray

aux(] E E G M R | E

=l
—

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux[] E E G M R C E R T

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A C

compare minimum in each subarray

aux(] E G M R E R T

i i

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux(] E E G M R | E R T

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A C E

compare minimum in each subarray

aux]] G M R E R T

i i

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

aux(] E G M R | E R T

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A C E E

compare minimum in each subarray

(9}
=<
Pl
=]
=
—

aux[]

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux(] G M R | E R T

i i

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A C E E E

compare minimum in each subarray

aux(] M R | R T

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

aux(] G M R | R T

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A C E E E G

compare minimum in each subarray

aux(] “ R | R T

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux(] M R | R T

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A C E E E G M

compare minimum in each subarray

aux(] “ R T

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux(] R | R T

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A C E E E G M R

one subarray exhausted, take from other

o

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

one subarray exhausted, take from other

aux(] R T

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A C E E E G M R R

one subarray exhausted, take from other

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

one subarray exhausted, take from other

aux(] T

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A C E E E G M R R T

both subarrays exhausted, done

aux[]

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

lo hi
afl A C E E E G M R R T
N N /
\/
sorted

Merging: Java implementation

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{

for (int k = To; k <= hi; k++) copy
aux[k] = a[k];

int i = To, j = mid+1;
for (int k = To; k <= hi; k++)
{

if G o> mid) afkl = aux[j++1; merge
else if (7 > hi) alk] = aux[i++];
else if (less(aux[j], aux[i])) a[k] = aux[j++];
else alk] = aux[i++];
}
}
Tlo i mid 3j hi
aUX[]AGLORIHIM s T

all A G H I L M

Q. Why is aux passed as argument? Why is mid passed as argument?

Mergesort quiz 1

How many calls does merge() make to to Tess() to merge two sorted
subarrays of size N/2 each into a sorted array of size N.

A. ~UNto ~%LN

B. ~uBnN

C. ~%ANto ~N

D. ~N

E. Hey, this just counts for class participation points, right?

Mergesort: Java implementation

public class Merge

{
private static void merge(...)
{ /* as before */ 1}

private static void sort(Comparable[] a, Comparable[] aux, int Tlo, int hi)
{

if (hi <= To) return;

int mid = To + ¢(hi - 10) / 2;

sort(a, aux, lo, mid);

sort(a, aux, mid+l, hi);

merge(a, aux, lo, mid, hi);

}

public static void sort(Comparable[] a)

{
Comparable[] aux = new Comparable[a.length];
sort(a, aux, 0, a.length - 1);

Mergesort: trace

Mergesort quiz 2

Which of the following subarray lengths will occur when running mergesort
on an array of length 12?

{1,2,3,

IS

.6, 8,12}
{1,2,3,6, 12 }
{1,2,4,8,12 }

{1,3,6,9, 12 }

mo N w p

I don't know.

a[]
To hi o 2 4 5 6 7 8 91011 12 13 14 15
\ / M R ESORTEIXAMPLE
merge(a, aux, 0, 0, 1) E
merge(a, aux, 2, 2, 3) G
merge(a, aux, 0, 1, 3) E M
merge(a, aux, 4, 4, 5) E S
merge(a, aux, 6, 6, 7) 0 R
merge(a, aux, 4, 5, 7) E 0O R S
merge(a, aux, 0, 3, 7) E G 0O R R S
merge(a, aux, 8, 8, 9) E T
merge(a, aux, 10, 10, 11) A X
merge(a, aux, 8, 9, 11) A E T X
merge(a, aux, 12, 12, 13) M P
merge(a, aux, 14, 14, 15) E L
merge(a, aux, 12, 13, 15) E L M P
merge(a, aux, 8, 11, 15) A E ELMPTX
merge(a, aux, 0, 7, 15) A E EGLMMOUPR RIR RSTX
result after recursive call
34
Mergesort: animation
50 random items
A algorithm position
S in Order
I I | I ' EEmmmm——— Current subarray
s NOU in order

http://www.sorting-algorithms.com/merge-sort

Mergesort: animation

50 reverse-sorted items

algorithm position
in order
current subarray

http:/ /www.sorting-algorithms.com/merge-sort

|||>

not in order

Mergesort analysis: number of compares

Proposition. Mergesort uses < Nlg N compares to sort an array of length N.

Pf sketch. The maximum number of compares C (V) to mergesort an array
of length N satisfies the recurrence:

C(N) = C(IN/2)) + C(IN/2]) + N—1 for N >1, with C(1)=0.
4 4 t

left half right half merge

We solve this simpler recurrence, and assume N is a power of 2:

result holds for all N
(analysis cleaner in this case)

D(N) =2D(N/2) + N, for N > 1, with D(1)=0.

Q. Can you show that C(N) <= C(N+1)?

N

Divide-and-conquer recurrence

Proposition. If D(W) satisfies D(N)=2D(N/2) + N for N > 1, with D(1)=0,
then D(V) = Nlg N.

Pf by picture. [assuming N is a power of 2]
D @) N =N

D(N/2) D(N/2) 2 (N2) =N

N N

D(N/ 4) DN/ 4) DN/ 4) DN/ 4) 4 (N/4) =N

AYATATVA

D(N/8) DIN/8) DIN/8) DIN/8) — D(N/8) D(N/8) DN/8) DWN/8) 8 (N/8) =N

T(N)=NlgN

Mergesort analysis: number of array accesses

Proposition. Mergesort uses < 6 Nlg N array accesses to sort an array of
length N.

Pf sketch. The max number of array accesses 4 (V) satisfies the recurrence:
A(N) < A([N/2]) + A(IN/2]) + 6N for N > 1, with 4(1)=0.

Key point. Any algorithm with the following structure takes Nlog N time:

public static void f(int N)

{

if (N == 0) return;

f(N/2); <—— solve two problems

f(N/2); «—— of half the size

Tinear(N); «—— doa linear amount of work
}

Notable examples. FFT, hidden-line removal, Kendall-tau distance, ...

Mergesort analysis: memory

Proposition. Mergesort uses extra space proportional to N.
Pf. The array aux[] needs to be of length N for the last merge.

two sorted subarrays

A CDGHTIMNUV BETFIJOPQRST

A B CDEFGHTIIJ MNOUPAOQRSTUV

merged result

Def. A sorting algorithm is in-place if it uses = clog N extra memory.

Ex. Insertion sort, selection sort, shellsort.

Challenge 1 (not hard). Use aux[] array of length ~ % N instead of N.
Challenge 2 (very hard). In-place merge. [Kronrod 1969]

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

lo mid mid+1 hi
afl E E G M R A C E R T
/
sorted sorted

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

lo mid mid+1 hi

all E E G M R A C E R T

copy to auxiliary array (of half the size)

aux[]

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

aux(] E E G M R

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

an B = r

compare minimum in each subarray

aux(] E E G M R

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

au A C E R T

k J

compare minimum in each subarray

aux(] E E G M R

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

4 A | < I

compare minimum in each subarray

aux(] E E G M R

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux(] E E G M R

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A C E R T

compare minimum in each subarray

aux(] E G M R

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux(] E E G M R

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A C E E R T

compare minimum in each subarray

aux(] G M R

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

auxI] E G M R

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

al] A C E E R T

compare minimum in each subarray

aux(] G M R

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux(] G M R

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A C E E E R T

compare minimum in each subarray

aux(] M R

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux(] G M R

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A C E E E G R T

compare minimum in each subarray

o

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux(] M R

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A C E E E G M R T

compare minimum in each subarray

]

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux(] R

Merging demo

Goal. Given two sorted subarrays a[1o] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[l1o] to a[hi].

all A C E E E G M R R T

if auxiliary subarray is exhausted, done!

aux[]

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],
replace with sorted subarray a[1o] to a[hi].

sorted

Mergesort quiz 3

Is our implementation of mergesort stable?

Yes.
No, but it can be modified to be stable.
No, mergesort is inherently unstable.

1 don't remember what stability means.

I don't know. \
a sorting algorithm is stable if it

preserves the relative order of equal keys

m o N = »

input C Al B A A;

sorted A3 A; A2 B C

not stable

Stability: mergesort

Proposition. Mergesort is stable.

public class Merge

{
private static void merge(...)
{ /* as before */ }

private static void sort(Comparable[] a, Comparable[] aux, int 1o, int hi)
{

if (hi <= To) return;

int mid = 1o + (hi - T0) / 2;

sort(a, aux, lo, mid);

sort(a, aux, mid+l, hi);

merge(a, aux, lo, mid, hi);

}

public static void sort(Comparable[] a)
{ /* as before */ }

Pf. Suffices to verify that merge operation is stable.

Stability: mergesort

Proposition. Merge operation is stable.

private static void merge(...)

{
for (int k = To; k <= hi; k++)
aux[k] = a[k];
int i = lo, j = mid+1;
for (int k = To; k <= hi; k++)
{
if (i > mid) alk]l = aux[j++];
else if (j > hi) a[k] = aux[i++];
else if (less(aux[j], aux[i1)) alk] = aux[j++];
else alk] = aux[i++];
3
}
0o 1 2 3 4 5 6 7 8 9 10
Al A2 A3 B D As As C E F G

Pf. Takes from left subarray if equal keys.

Mergesort: practical improvements

Use insertion sort for small subarrays.
« Mergesort has too much overhead for tiny subarrays.
— Not captured in cost model (humber of compares)
« Cutoff to insertion sort for = 10 items.

private static void sort(Comparable[] a, Comparable[] aux, int 1o, int hi)
{
if (hi <= To + CUTOFF - 1)
{
Insertion.sort(a, lo, hi);
return;
}
int mid = To + (hi - 10) / 2;
sort (a, aux, lo, mid);
sort (a, aux, mid+l, hi);
merge(a, aux, lo, mid, hi);

Mergesort with cutoff to insertion sort: visualization

SE—L
second subarray Ll
(1
|
anill

first

il
po—]
utll
...--nll"l
il
il
il
L]
nnlllIIIIII||||"““"““""|
mn||||||||IIIIIIIII||||||||||||||“""““I“""“IIIIIIIIIIIIIIIIIII""l

second half sorted

result

Mergesort: practical improvements

Stop if already sorted.
« Is largest item in first half < smallest item in second half?
« Helps for partially-ordered arrays.

ABCDEFGHI@OMNOPQRSTUV

A B CDETFGHTIIJ MNUOPQRSTUV

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{

if (hi <= 10) return;

int mid = 1o + (hi - 10) / 2;

sort (a, aux, lo, mid);

sort (a, aux, mid+l, hi);

if ('less(a[mid+1], a[mid])) return;

merge(a, aux, lo, mid, hi);

Mergesort: practical improvements

Eliminate the copy to the auxiliary array. Save time (but not space)
by switching the role of the input and auxiliary array in each recursive call.

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{

int i = lo, j = mid+l;

for (int k = To; k <= hi; k++)

{
if G o> mid) aux[k] = a[j++];
else if (j > hi) aux[k] = a[i++];
else if (less(a[jl, a[il)) aux[k] = a[j++]; < merge from a[] to aux(]
else aux[k] = ali++];
}

}
private static void sort(Comparable[] a, Comparable[] aux, int To, int hi)

if (hi <= 10) return; I
int mid = To + (hi - 10) / 2;
sort (aux, a, lo, mid);

sort (aux, a, mid+l, hi);
merge(a, aux, lo, mid, hi);

assumes aux[] is initialize to a[] once,
before recursive calls

switch roles of aux[] and a[]

Java 6 system sort

Basic algorithm for sorting objects = mergesort.
« Cutoff to insertion sort = 7.
« Stop-if-already-sorted test.
 Eliminate-the-copy-to-the-auxiliary-array trick.

Arrays.sort(a)

%{g) Java

S
—

http://hg.openjdk.java.net/jdk6/jdk6 /jdk/file/tip/src/share/classes/java/util /Arrays.java

2.2 MERGESORT

» bottom-up mergesort

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Bottom-up mergesort

Basic plan.

« Pass through array, merging subarrays of size 1.

« Repeat for subarrays of size 2, 4, 8,

afil
0 1 2 3 4 5 6 7 8 9101112131415
sz=1 M ERGESORTENXAMPTLE
merge(a, aux, 0, 0, 1) E M
merge(a, aux, 2, 2, 3) G R
merge(a, aux, 4, 4, 5) E S
merge(a, aux, 6, 6, 7) 0 R
merge(a, aux, 8, 8, 9) E T
merge(a, aux, 10, 10, 11) A X
merge(a, aux, 12, 12, 13) M P
merge(a, aux, 14, 14, 15) E L
sz=2
merge(a, aux, 0, 1, 3) E G MR
merge(a, aux, 4, 5, 7) E 0O R S
merge(a, aux, 8, 9, 11) A E T X
merge(a, aux, 12, 13, 15) E L M P
sz=4
merge(a, aux, 0, 3, 7) E EGMORRS
merge(a, aux, 8, 11, 15) A EELMPT X
sz=8
merge(a, aux, 0, 7, 15) A EEEEGLMMOZPRIR RSTX

Bottom-up mergesort: Java implementation

public class MergeBU

{
private static void merge(...)
{ /* as before */ }

public static void sort(Comparable[] a)
{
int N = a.length;
Comparable[] aux = new Comparable[N];
for (int sz = 1; sz < N; sz = sz+sz)
for (int 1o = 0; 1o < N-sz; 1o += sz+sz)
merge(a, aux, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));

Bottom line. Simple and non-recursive version of mergesort.

Mergesort: visualizations

top-down mergesort (cutoff = 12) bottom-up mergesort (cutoff = 12)

73
Mergesort quiz 4
Which is faster in practice: top-down mergesort or bottom-up mergesort?
You may assume N is a power of 2.
A. Top-down (recursive) mergesort. <—— Maybe! Locality
B. Bottom-up (nonrecursive) mergesort. «<—— Maybe! Overhead
C. About the same.
D. It depends.
E. Idon't know.
Overhead can be minimized with well-chosen cutoff to insertion sort.
Locality is inherent.
75

Natural mergesort

Idea. Exploit pre-existing order by identifying naturally-occurring runs.

input

1 5 10 16 3 4 23 9 13 2 7 8 12 14

first run

1 5 10 16

second run

merge two runs

1 3 4 5 10 16 23

Tradeoff. Fewer passes vs. extra compares per pass to identify runs.

Timsort

« Natural mergesort.
« Use binary insertion sort to make initial runs (if needed).
« A few more clever optimizations.

Tim Peters

Consequence. Linear time on many arrays with pre-existing order.
Now widely used. Python, Java 7, GNU Octave, Android,

http://hg.openjdk java.net/jdk7/jdk7/jdk/file/tip/src/share/classes/java/util /Arrays.java

Sorting summary

selectiol v

v
’

- v

B N2

avi ge worst [GUERS

era
BN2 BN2 N exchanges

use for small N
or partially ordered

% N2 BN2

5 N3 tight code;
oo subquadratic
Nlog N guarantee;
NIgN NlgN stable

improves mergesort

Nigh NlgN when preexisting order

NigN NlgN holy sorting grail

2.2 MERGESORT

» sorting complexity

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Commercial break

https://www.youtube.com/watch?v=tSEHDBSynVo

Complexity of sorting

Computational complexity. Framework to study efficiency of algorithms
for solving a particular problem X.

Model of computation. Allowable operations.
Cost model. Operation counts.
Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best possible cost guarantee for X.
AN lower bound ~ upper bound
model of computation decision tree <«——— can access information

only through compares

cost model # compares (e.g., Java Comparable framework)

upper bound ~ N lg N from mergesort
lower bound ?
optimal algorithm ?

complexity of sorting 81

Decision tree (for 3 distinct keys a, b, and c)

a<b

height of tree =
worst-case number
of compares

code between compares
(e.g., sequence of exchanges)

yes

each leaf corresponds to one (and only one) ordering;
(at least) one leaf for each possible ordering

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least
Ig(N!) ~ NlgN compares in the worst-case.

Pf.
* Assume array consists of N distinct values a; through ax.
* Worst case dictated by height » of decision tree.
« Binary tree of height /# has at most 2" leaves.
« N!different orderings = at least N'! leaves.

at least N! leaves

10 more than 2h leaves

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least
Ig(N!) ~ NigN compares in the worst-case.

Pf.
* Assume array consists of N distinct values a through ay.
» Worst case dictated by height & of decision tree.
« Binary tree of height i has at most 2" leaves.
« N!different orderings = at least N'! leaves.

2" > #leaves > N!

= h>1g(N!) ~ NIgN

Stirling's formula

Complexity of sorting

Model of computation. Allowable operations.

Cost model. Operation count(s).

Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best possible cost guarantee for X.

model of computation decision tree

cost model # compares

upper bound NlgN
lower bound NlgN
optimal algorithm

complexity of sorting

First goal of algorithm design: optimal algorithms.

Complexity results in context

Compares? Mergesort is optimal with respect to number compares.
Space? Mergesort is not optimal with respect to space usage.

Lessons. Use theory as a guide.
Ex. Design sorting algorithm that guarantees ~ s N1g N compares?
Ex. Design sorting algorithm that is both time- and space-optimal?

Complexity results in context (continued)

Lower bound may not hold if the algorithm can take advantage of:

« The initial order of the input.
Ex: insertion sort requires only a linear number of compares on
partially-sorted arrays.

« The distribution of key values.
Ex: 3-way quicksort requires only a linear number of compares on

arrays with a constant number of distinct keys. [stay tuned]

« The representation of the keys.
Ex: radix sorts require no key compares — they access the data

via character/digit compares.

Q. How would you sort an array of Students by birthday?
Q. How would you sort an array of Students by last name (of <= 12 chars)?

Commonly-used notations in the theory of algorithms

Shorthand for

B N2

Tilde leading term ~1h N2
% N2+22NlogN+3N

% N2
Big Theta order of growth BO(N?2) 10N2
5N2+22NlogN+3N

10N2
Big O upper bound O(N2) 100 N
22 Nlog N+3N

BN2
Big Omega lower bound Q(N?2) NS
N3+22NlogN+3N

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.2 MERGESORT

» divide-and-conquer

Shuffle a linked list

Problem. Given a singly-linked list, rearrange its nodes uniformly at random.

Assumption. Access to a perfect random number generator. _
all N! permutations

. . . A equally likely
Version 1. Linear time, linear extra space.

Version 2. Linearithmic time, logarithmic or constant extra space.
Hard! (See Piazza)

first
V

input 5% —> 6% —> 286 —— 7% —— 3% —— 4% ——

first
V

shuffled S5k — 5 66 — 5 286 5 7% 5 3% __, 4% 5 il

