
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 2/8/16 7:22 AM

1.3 BAGS, QUEUES, AND STACKS

‣ stacks
‣ resizing arrays

‣ queues

‣ generics

‣ iterators
‣ applications

see precept

Stacks and queues

Abstract data types.

・Value: collection of objects.

・Operations: add, remove, iterate, test if empty.

・Intent is clear when we add.

・Which item do we remove?

 
 
 
 
 
 
 
 
Stack. Examine the item most recently added.

Queue. Examine the item least recently added.

pop

pushstack

2

LIFO = "last in first out"

FIFO = "first in first out"

enqueue dequeue

queue

Client, implementation, API

Separate client and implementation via API.

 An Abstract Data type is one type of API.

 
 
 
 
 
 
 
 
Benefits.

・Design: creates modular, reusable libraries.

・Performance: substitute optimized implementation when it matters.

 
Ex. Stack, queue, bag, priority queue, symbol table, union-find, .…

3

 API: description of data type, basic operations.

 Client: program using operations defined in API.

 Implementation: actual code implementing operations.

Client API Implementation

Interfaces can be ambiguous

Stacks and queues.

・Value: collection of objects.

・Operations: add, remove, iterate, test if empty.

Q. What are two ways in which the semantics of iteration can be ambiguous?

A.

・What order to iterate in: same as removal order or does client not care?

・What happens if collection is modified during iteration?

4

The iterator method on java.util.Stack iterates through a Stack from
the bottom up. One would think that it should iterate as if it were
popping off the top of the Stack.

Java 1.3 bug report (June 27, 2001)

It was an incorrect design decision to have Stack extend Vector ("is-a"
rather than "has-a"). We sympathize with the submitter but cannot fix
this because of compatibility.

status (closed, will not fix)

Ambiguity in the semantics of interfaces leads to bugs

Example: Mars climate orbiter.

Lost due to metric vs. imperial mishap in contract between NASA & Lockheed

5

Layers in a computer system

6

Program

Libraries

Programming language

Operating system

Hardware

This lecture

API

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ stacks
‣ resizing arrays

‣ queues

‣ generics

‣ iterators

‣ applications

1.3 BAGS, QUEUES, AND STACKS

Warmup API. Stack of strings data type.

8

Stack API

poppush

 public class StackOfStrings

StackOfStrings() create an empty stack

void push(String item) add a new string to stack

String pop()
remove and return the string  

most recently added

boolean isEmpty() is the stack empty?

int size() number of strings on the stack

Stacks quiz 1

9

of best the was it null

most recently added

it was the best of null

least recently added

How to implement a stack with a singly-linked list?

 
 

 

C. None of the above.  

D. I don't know.

B.

A.

Stack: linked-list implementation

・Maintain pointer first to first node in a singly-linked list.

・Push new item before first.

・Pop item from first.

10

first

of best the was it null

most recently added

Stack pop: linked-list implementation

11

to

be

orfirst

first = first.next;

to

be
or

first

null

null

Removing the first node in a linked list

String item = first.item;

save item to return

delete first node

return item;

return saved item

inner class

private class Node
{
 String item;
 Node next;
}

Stack push: linked-list implementation

12

to

be

Inserting a new node at the beginning of a linked list

first = new Node();

Node oldfirst = first;

orfirst

to

be

or

oldfirst

oldfirst

first

save a link to the list

create a new node for the beginning

set the instance variables in the new node

first.item = "not";
first.next = oldfirst;

to

be
or

notfirst

null

null

null

inner class

private class Node
{
 String item;
 Node next;
}

13

Stack: linked-list implementation in Java

public class LinkedStackOfStrings
{ 
 private Node first = null;

 private class Node
 { 
 private String item;  
 private Node next;  
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(String item)
 { 
 Node oldfirst = first; 
 first = new Node();  
 first.item = item;  
 first.next = oldfirst; 
 }

 public String pop()
 { 
 String item = first.item;  
 first = first.next;  
 return item;  
 } 
}

private inner class
(access modifiers for instance
variables don't matter)

Stack: linked-list implementation performance

Proposition. Every operation takes constant time in the worst case.

 
 
Proposition. A stack with n items uses ~ 40 n bytes.

 
 
 
 
 
 
 
 
 
Remark. This accounts for the memory for the stack 
(but not memory for the strings themselves, which the client owns).

14

8 bytes (reference to String)

8 bytes (reference to Node)

16 bytes (object overhead)

40 bytes allocated per stack node

public class Node
{
 String item;
 Node next;
...
}

node object (inner class) 40 bytes

references

object
overhead

extra
overhead

item

next

8 bytes (inner class extra overhead)

inner class

private class Node
{
 String item;
 Node next;
}

How to implement a fixed-capacity stack with an array?  
 

 
 
 
 
 

B. None of the above.  

C. I don't know.
15

Stacks quiz 2

times of best the was it null null null null

0 1 2 3 4 5 6 7 8 9

most recently added

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

least recently added

B.

A.

Fixed-capacity stack: array implementation

・Use array s[] to store n items on stack.

・ push(): add new item at s[n].

・ pop(): remove item from s[n-1].

 
 
 
 
 
 
 
 
 
 
 
Defect. Stack overflows when n exceeds capacity. [stay tuned]

16

s[]

n capacity = 10

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

least recently added

public class FixedCapacityStackOfStrings 
{ 
 private String[] s; 
 private int n = 0;

 public FixedCapacityStackOfStrings(int capacity) 
 { s = new String[capacity]; }

 public boolean isEmpty() 
 { return n == 0; }

 public void push(String item) 
 { s[n++] = item; }

 public String pop() 
 { return s[--n]; }
}

17

Fixed-capacity stack: array implementation

decrement n; 
then use to index into array

a cheat
(stay tuned)

use to index into array; 
then increment n

Stack considerations

Overflow and underflow.

・Underflow: throw exception if pop from an empty stack.

・Overflow: use "resizing array" for array implementation. [stay tuned]

 
Null items. We allow null items to be added.

Duplicate items. We allow an item to be added more than once.

Loitering. Holding a reference to an object when it is no longer needed.

18

this version avoids "loitering":
garbage collector can reclaim memory for
an object only if no remaining references

public String pop() 
{ 
 String item = s[--n]; 
 s[n] = null; 
 return item; 
}

loitering

public String pop() 
{ return s[--n]; }

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ stacks
‣ resizing arrays

‣ queues

‣ generics

‣ iterators

‣ applications

1.3 BAGS, QUEUES, AND STACKS

Stack: resizing-array implementation

Problem. Requiring client to provide capacity does not implement API!  
Q. How to grow and shrink array?

 
First try.

・ push(): increase size of array s[] by 1.

・ pop(): decrease size of array s[] by 1.

 
Too expensive.

・Need to copy all items to a new array, for each operation.

・Array accesses to add first n items = n + (2 + 4 + … + 2(n – 1)) ~ n2.

 
 
 
 
 
Challenge. Ensure that array resizing happens infrequently.

20

infeasible for large n

1 array access
per push

2(k–1) array accesses to expand to size k
(ignoring cost to create new array)

Q. Why no way to increment array size except by creating new one?

A. Because Java doesn’t let us

 Because OS doesn’t let us safely write past memory bounds

 Because memory is fragmented at the hardware level

Why isn’t array resizing easier?

21

Program See Applications
section

Library Data structures
(ArrayStack)

Programming
language

Basic data types
(Array)

Operating system Memory
allocation

Hardware Physical memory

API / Abstract Data Type / Interface

(Stack)*

*Note: in this course Stack is a class  
and not an interface

Memory fragmentation

22

Q. How to grow array?

A. If array is full, create a new array of twice the size, and copy items.

 
 
 
 
 
 
 
 
 
 
 
 
Array accesses to add first n = 2i items. n + (2 + 4 + 8 + … + n) ~ 3n.

Stack: resizing-array implementation

"repeated doubling"

 public ResizingArrayStackOfStrings()
 { s = new String[1]; }

 public void push(String item)
 {
 if (n == s.length) resize(2 * s.length);
 s[n++] = item;
 }

 private void resize(int capacity) 
 { 
 String[] copy = new String[capacity]; 
 for (int i = 0; i < n; i++) 
 copy[i] = s[i]; 
 s = copy; 
 }

1 array access
per push

k array accesses to double to size k
(ignoring cost to create new array)

Stack: resizing-array implementation

Q. How to shrink array?

 
First try.

・ push(): double size of array s[] when array is full.

・ pop(): halve size of array s[] when array is one-half full.

 
Too expensive in worst case.

・Consider push-pop-push-pop-… sequence when array is full.

・Each operation takes time proportional to n.

23

push("to") to be or not to null null null

to be or notfull

to be or notpop()

to be or not be null null nullpush("be")

Stack: resizing-array implementation

Q. How to shrink array?

Efficient solution.

・ push(): double size of array s[] when array is full.

・ pop(): halve size of array s[] when array is one-quarter full.

Invariant. Array is between 25% and 100% full.

24

 public String pop() 
 {
 String item = s[--n];
 s[n] = null;
 if (n > 0 && n == s.length/4) resize(s.length/2);
 return item;
 }

Stack resizing-array implementation: performance

Amortized analysis. Starting from an empty data structure, average

running time per operation over a worst-case sequence of operations.

 
Proposition. Starting from an empty stack, any sequence of m push and

pop operations takes time proportional to m.

25

typical worst amortized

construct 1 1 1

push 1 n 1

pop 1 n 1

size 1 1 1

doubling and
halving operations

order of growth of running time 
for resizing array stack with n items

Stack resizing-array implementation: performance

Amortized analysis. Starting from an empty data structure, average

running time per operation over a worst-case sequence of operations.

 
Proposition. Starting from an empty stack, any sequence of m push and

pop operations takes time proportional to m.

 
Proof.

・Divide the operations into batches.

・Each batch starts after a resize has just completed (or at the beginning)

and ends with the next resize (or at the end).

・Claim: the cost of processing each batch is proportional to the number

of operations in that batch.

Exercise: complete this argument.

 
Exercise: would proof hold if we’d had different constants instead of ½ and

¼ (say ⅔ & ⅓)? What are the factors to consider in picking the constants?

26

Stack resizing-array implementation: memory usage

Proposition. A ResizingArrayStackOfStrings uses ~ 8n to ~ 32n bytes of

memory for a stack with n items.

・~ 8n when full.

・~ 32n when one-quarter full.

 
 
 
 
 
 
 
 
 
 
Remark. This accounts for the memory for the stack 
(but not the memory for strings themselves, which the client owns).

27

public class ResizingArrayStackOfStrings 
{ 
 private String[] s; 
 private int n = 0;
 …
}

 8 bytes × array size

Stack implementations: resizing array vs. linked list

Tradeoffs. Can implement a stack with either resizing array or linked list;  
client can use interchangeably. Which one is better? 

Linked-list implementation.

・Every operation takes constant time in the worst case.

・Uses extra time and space to deal with the links.  

Resizing-array implementation.

・Every operation takes constant amortized time.

・Less wasted space.

28

to be or not null null null nulln = 4

to

be

Inserting a new node at the beginning of a linked list

first = new Node();

Node oldfirst = first;

orfirst

to

be

or

oldfirst

oldfirst

first

save a link to the list

create a new node for the beginning

set the instance variables in the new node

first.item = "not";
first.next = oldfirst;

to

be
or

notfirst

null

null

null

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ stacks
‣ resizing arrays

‣ queues

‣ generics

‣ iterators
‣ applications

1.3 BAGS, QUEUES, AND STACKS

30

Queue API

 public class QueueOfStrings

QueueOfStrings() create an empty queue

void enqueue(String item) add a new string to queue

String dequeue()
remove and return the string  

least recently added

boolean isEmpty() is the queue empty?

int size() number of strings on the queue

enqueue

dequeue

How to implement a queue with a singly-linked linked list?  
 

 
 

C. None of the above.  

D. I don't know.
31

Queues quiz 1

most recently added

of best the wastimes it null

least recently added

was the best ofit times null

B.

A.

Queue: linked-list implementation

・Maintain one pointer first to first node in a singly-linked list.

・Maintain another pointer last to last node.

・Dequeue from first.

・Enqueue after last.

32

first last

most recently addedleast recently added

was the best ofit times null

Queue dequeue: linked-list implementation

Remark. Identical code to linked-list stack pop().

33

or

be

tofirst

first = first.next;

or

be
to

first

null

null

Removing the first node in a linked list

String item = first.item;

save item to return

delete first node

return item;

return saved item

last

lastinner class

private class Node
{
 String item;
 Node next;
}

Queue enqueue: linked-list implementation

34

inner class

private class Node
{
 String item;
 Node next;
}

or

be

Inserting a new node at the end of a linked list

last = new Node();
last.item = "not";

Node oldlast = last;

tofirst

or

be

to

oldlast

oldlast

last

save a link to the last node

create a new node for the end

link the new node to the end of the list

oldlast.next = last;

not

not

or
be

tofirst

null

null

null

null

last

last
first

oldlast

35

 Queue: linked-list implementation in Java

public class LinkedQueueOfStrings 
{ 
 private Node first, last; 

 private class Node 
 { /* same as in LinkedStackOfStrings */ }

 public boolean isEmpty() 
 { return first == null; }

 public void enqueue(String item)  
 { 
 Node oldlast = last;
 last = new Node(); 
 last.item = item;
 last.next = null; 
 if (isEmpty()) first = last;
 else oldlast.next = last;
 }

 public String dequeue() 
 { 
 String item = first.item; 
 first = first.next;
 if (isEmpty()) last = null; 
 return item; 
 } 
}

special cases for
empty queue

How to implement a fixed-capacity queue with an array?  

A.  

 

B.  

 

 

 

C. None of the above.  

D. I don't know.
36

Queues quiz 2

times of best the was it null null null null

0 1 2 3 4 5 6 7 8 9

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

least recently added

most recently added

Queue: resizing-array implementation

・Use array q[] to store items in queue.

・ enqueue(): add new item at q[tail].

・ dequeue(): remove item from q[head].

・Update head and tail modulo the capacity.

・Add resizing array.

 
 
 
 
 
 
 
 
 
 
Q. How to resize?

37

q[]

head tail capacity = 10

null null the best of times null null null null

0 1 2 3 4 5 6 7 8 9

least recently added most recently added

Queue with two stacks

Job interview problem. Implement a queue with two stacks so that:

・Each queue op uses a constant amortized number of stack ops.

・At most constant extra memory (besides the two stacks).

 
Solution. Call the two stacks incoming and outgoing.

・enqueue: push to incoming

・dequeue: pop from outgoing

– if outgoing is empty, first “pour” incoming into outgoing (O(N)).

・isEmpty: check if both stacks are empty 

Analysis: correctness. Left as exercise. 

Analysis: efficiency. Consider the lifecycle of each item:  
 pushed into incoming, popped from incoming,  
 pushed into outgoing, popped from outgoing. 
At most 4 stack operations per item. [Exercise: complete this argument.]

38

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ stacks
‣ resizing arrays

‣ queues

‣ generics

‣ iterators

‣ applications

1.3 BAGS, QUEUES, AND STACKS

Parameterized stack

We implemented: StackOfStrings.

We also want: StackOfURLs, StackOfInts, StackOfApples, StackOfOranges, ….

 
Solution in Java: generics.

40

 Stack<Apple> stack = new Stack<Apple>();
 Apple apple = new Apple();

 Orange orange = new Orange();

 stack.push(apple);

 stack.push(orange);

 ...

compile-time error

type parameter
(use both to specify type and to call constructor)

Guiding principle. Welcome compile-time errors; avoid run-time errors.

public class LinkedStackOfStrings
{ 
 private Node first = null;

 private class Node
 { 
 String item; 
 Node next; 
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(String item)
 { 
 Node oldfirst = first; 
 first = new Node(); 
 first.item = item; 
 first.next = oldfirst; 
 }

 public String pop()
 { 
 String item = first.item; 
 first = first.next; 
 return item; 
 } 
}

public class LinkedStack<Item>
{ 
 private Node first = null;

 private class Node
 { 
 Item item; 
 Node next; 
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(Item item)
 { 
 Node oldfirst = first; 
 first = new Node(); 
 first.item = item; 
 first.next = oldfirst; 
 }

 public Item pop()
 { 
 Item item = first.item; 
 first = first.next; 
 return item; 
 } 
}

41

Generic stack: linked-list implementation

generic type name

public class FixedCapacityStackOfStrings 
{ 
 private String[] s; 
 private int n = 0;

 public ..StackOfStrings(int capacity) 
 { s = new String[capacity]; }

 public boolean isEmpty() 
 { return n == 0; }

 public void push(String item) 
 { s[n++] = item; }

 public String pop() 
 { return s[--n]; }
}

public class FixedCapacityStack<Item>  
{ 
 private Item[] s; 
 private int n = 0;

 public FixedCapacityStack(int capacity)
 { s = new Item[capacity]; }

 public boolean isEmpty() 
 { return n == 0; }

 public void push(Item item) 
 { s[n++] = item; }

 public Item pop() 
 { return s[--n]; }
}

42

Generic stack: array implementation

the way it should be

generic array creation not allowed in Java

43

Generic stack: array implementation

public class FixedCapacityStack<Item>  
{ 
 private Item[] s; 
 private int n = 0;

 public FixedCapacityStack(int capacity)
 { s = (Item[]) new Object[capacity]; }

 public boolean isEmpty() 
 { return n == 0; }

 public void push(Item item) 
 { s[n++] = item; }

 public Item pop() 
 { return s[--n]; }
}

ugly cast
(will result in a compile-time warning, but it’s not your fault)

the way it is

public class FixedCapacityStackOfStrings 
{ 
 private String[] s; 
 private int n = 0;

 public ..StackOfStrings(int capacity) 
 { s = new String[capacity]; }

 public boolean isEmpty() 
 { return n == 0; }

 public void push(String item) 
 { s[n++] = item; }

 public String pop() 
 { return s[--n]; }
}

44

Generic data types: autoboxing and unboxing

Q. What to do about primitive types? 

Wrapper type.

・Each primitive type has a wrapper object type.

・Ex: Integer is wrapper type for int. 
 

Autoboxing. Automatic cast from primitive type to wrapper type.

Unboxing. Automatic cast from wrapper type to primitive type. 
 
 
 
 
 

Bottom line. Client code can use generic stack for any type of data.

Stack<Integer> stack = new Stack<Integer>();

stack.push(17); // stack.push(Integer.valueOf(17));

int a = stack.pop(); // int a = stack.pop().intValue();

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ stacks
‣ resizing arrays

‣ queues

‣ generics

‣ iterators
‣ applications

1.3 BAGS, QUEUES, AND STACKS

see precept

Design challenge. Support iteration over stack items by client, 
without revealing the internal representation of the stack.

 
 
 
 
 
 
 
 
 
 
 
 
Java solution. Use a for-each loop.

Iteration

46

first current

of best the wastimes it null

s[]

n

it was the best of
time
s

null null null null

0 1 2 3 4 5 6 7 8 9

i
resizing-array representation

linked-list representation

Java provides elegant syntax for iteration over collections.

 
 
 
 
 
 
 
 
 
 
For a user-defined collection, do this to enable looping over it with for-each:

・Data type must have a method named iterator().

・The iterator() method returns an object that has two core methods.

– the hasNext() methods returns false when there are no more items

– the next() method returns the next item in the collection

For-each loop

47

equivalent code (longhand)

Stack<String> stack; 
... 

Iterator<String> i = stack.iterator();
while (i.hasNext())
{
 String s = i.next();
 ...
}

“for-each” loop (shorthand)

Stack<String> stack;
...

for (String s : stack)
 ...

}

To support for-each loops, Java provides two interfaces.

・ Iterator interface: next() and hasNext() methods.

・ Iterable interface: iterator() method that returns an Iterator.

・Both should be used with generics.

 
 
 
 
 
 
 
 
 
Type safety.

・Data type must use these interfaces to support for-each loop.

・Client program won't compile if implementation doesn't.

public interface Iterator
{
 boolean hasNext();
 Item next();
 void remove();
}

java.util.Iterator interface

public interface Iterable
{
 Iterator iterator();
}

java.lang.Iterable interface

public interface Iterable<Item>
{
 Iterator<Item> iterator();
}

Iterators

48

public interface Iterator<Item>
{
 boolean hasNext();
 Item next();
 void remove();
}

optional; use 
at your own risk

Stack iterator: linked-list implementation

49

import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>
{
 ...

 public Iterator<Item> iterator() { return new ListIterator(); }

 private class ListIterator implements Iterator<Item>
 {
 private Node current = first;

 public boolean hasNext() { return current != null; }
 public void remove() { /* not supported */ }
 public Item next()
 {
 Item item = current.item;
 current = current.next;
 return item;
 }
 }
}

throw UnsupportedOperationException

throw NoSuchElementException
if no more items in iteration

first current

of best the wastimes it null

Stack iterator: array implementation

50

import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>
{
 ...

 public Iterator<Item> iterator()
 { return new ReverseArrayIterator(); }

 private class ReverseArrayIterator implements Iterator<Item>
 {
 private int i = n;

 public boolean hasNext() { return i > 0; }
 public void remove() { /* not supported */ }
 public Item next() { return s[--i]; }
 }
}

s[]

n

it was the best of
time
s

null null null null

0 1 2 3 4 5 6 7 8 9

i

Iteration: concurrent modification

51

Q. What if client modifies the data structure while iterating?

A. A fail-fast iterator throws a java.util.ConcurrentModificationException.

 
 
 
 
 
 
Q. How to detect concurrent modification?

A.

・Count total number of push() and pop() operations in Stack.

・Save counts in *Iterator subclass upon creation.

・If, when calling either next() or hasNext(), the current counts do not

equal the saved counts, throw exception.

concurrent modification

for (String s : stack)

 stack.push(s);

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ stacks
‣ resizing arrays

‣ queues

‣ generics

‣ iterators

‣ applications

1.3 BAGS, QUEUES, AND STACKS

PSA

 

For this course, use our Stack and Queue implementations instead of Java’s.

53

Stack applications

・Parsing in a compiler.

・Java virtual machine.

・Undo in a word processor.

・Back button in a Web browser.

・PostScript language for printers.

・Implementing function calls in a compiler.

・...

54

Goal. Evaluate infix expressions 
 using two stacks.

 
 
 
 
Two-stack algorithm. [E. W. Dijkstra]

・Value: push onto the value stack.

・Operator: push onto the operator stack.

・Left parenthesis: ignore.

・Right parenthesis:

– pop operator and two values

– apply operator to the two values

– push the result to value stack.

 
 

(1 + ((2 + 3) * (4 * 5)))

55

Arithmetic expression evaluation

5734.3 Stacks and Queues

it is easy to convince yourself that it computes the proper value: any time the algo-
rithm encounters a subexpression consisting of two operands separated by an op-
erator, all surrounded by parentheses, it leaves the result of performing that opera-
tion on those operands on the operand stack. The result is the same as if that value
had appeared in the input instead of the sub-
expression, so we can think of replacing the
subexpression by the value to get an expression
that would yield the same result. We can apply
this argument again and again until we get a
single value. For example, the algorithm com-
putes the same value of all of these expres-
sions:

(1 + ((2 + 3) * (4 * 5)))
(1 + (5 * (4 * 5)))
(1 + (5 * 20))
(1 + 100)
101

Evaluate (PROGRAM 4.3.5) is an implemen-
tation of this method. This code is a simple
example of an interpreter : a program that in-
terprets the computation specified by a given
string and performs the computation to ar-
rive at the result. A compiler is a program that
converts the string into code on a lower-level
machine that can do the job. This conversion
is a more complicated process than the step-
by-step conversion used by an interpreter, but
it is based on the same underlying mechanism.
Initially, Java was based on using an interpret-
er. Now, however, the Java system includes a
compiler that converts arithmetic expressions
(and, more generally, Java programs) into code
for the Java virtual machine, an imaginary ma-
chine that is easy to simulate on an actual com-
puter. Trace of expression evaluation (Program 4.3.5)

(1 + ((2 + 3) * (4 * 5)))

+ ((2 + 3) * (4 * 5)))

((2 + 3) * (4 * 5)))

+ 3) * (4 * 5)))

3) * (4 * 5)))

) * (4 * 5)))

* (4 * 5)))

(4 * 5)))

* 5)))

5)))

)))

))

)

 1

 1
 +

 1 2
 +

 1 2
 + +

 1 2 3
 + +

 1 5
 +

 1 5
 + *

 1 5 4
 + *

 1 5 4
 + * *

 1 5 4 5
 + * *

 1 5 20
 + *

 1 100
 +

 101

introJava.indb 573 1/3/08 4:16:56 PM

value stack
operator stack

(1 + ((2 + 3) * (4 * 5)))

56

Dijkstra's two-stack algorithm demo

(1 + ((2 + 3) * (4 * 5)))

operand operator

infix expression
(fully parenthesized)

value stack operator stack

57

Arithmetic expression evaluation

public class Evaluate
{
 public static void main(String[] args)
 {
 Stack<String> ops = new Stack<String>();
 Stack<Double> vals = new Stack<Double>();
 while (!StdIn.isEmpty()) {
 String s = StdIn.readString();
 if (s.equals("(")) /* noop */ ;
 else if (s.equals("+")) ops.push(s);
 else if (s.equals("*")) ops.push(s);
 else if (s.equals(")"))
 {
 String op = ops.pop();
 if (op.equals("+")) vals.push(vals.pop() + vals.pop());
 else if (op.equals("*")) vals.push(vals.pop() * vals.pop());
 }
 else vals.push(Double.parseDouble(s));
 }
 StdOut.println(vals.pop());
 }
} % java Evaluate

(1 + ((2 + 3) * (4 * 5)))
101.0

58

Correctness

Q. Why correct?

A. When algorithm encounters an operator surrounded by two values

within parentheses, it leaves the result on the value stack.

as if the original input were:

Repeating the argument:

Extensions. More ops, precedence order, associativity.

(1 + ((2 + 3) * (4 * 5)))

(1 + (5 * (4 * 5)))

(1 + (5 * 20))

(1 + 100)
101

59

Stack-based programming languages

Observation 1. Dijkstra's two-stack algorithm computes the same value if

the operator occurs after the two values.

Observation 2. All of the parentheses are redundant!

Bottom line. Postfix or "reverse Polish" notation.

Applications. Postscript, Forth, calculators, Java virtual machine, …

Jan Lukasiewicz1 2 3 + 4 5 * * +

(1 ((2 3 +) (4 5 *) *) +)

