Flipped lecture - L01

- Why flip?
- Why not?
- Find the most efficient way to deliver content
- Improve the outcomes
- Focus more on conceptual and conventional
- Quick poll
- Format of the flipped Lecture
- Mini lecture - a quick overview of concepts (30 mins) - Directed Graphs, MST’s
- Group Worksheets (30 minutes)
- Work with 2-3 students next to you
- Discussion of Solutions (20 mins)

Time spent on videos

API

```
public class Digraph
    Digraph(int V)
    Digraph(In in)
    void addEdge(int v, int w)
Iterable<Integer> adj(int v)
    int V()
    int E()
    Digraph reverse()
    String toString()
```


Implementation

Implementation of a weighted digraph using Adjacency List represented by Array of Bags
(flexible list length)

Order of Growth

| representation | space | insert edge
 from v to w | edge from
 v to $w ?$ | iterate over vertices
 adjacent from $v ?$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| list of edges | E | 1 | E | E |
| adjacency matrix | V^{2} | 1^{\dagger} | 1 | V |
| adjacency lists | $E+V$ | 1 | outdegree (v) | outdegree (v) |

Indegree and outdegree

- Indegree of a vertex v
- Number of edges directed at the vertex v
- Order of growth
- adjacency list - E+V
- adjacency matrix - V
- Outdegree of vertex v
- Number of edges from the vertex v to other vertices
- Order of growth
- Adjacency list - outdegree(v)
- Adjacency matrix - V

Directed graphs: quiz 1

Which is order of growth of running time to iterate over all vertices adjacent from v in a digraph using the adjacency-lists representation?
A. indegree(v)
B. outdegree(v)
C. degree(v)
D. V
E. I don't know.

Topological Order

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

orderings

Orderings.

- Preorder: order in which dfs() is called.
- Postorder: order in which dfs() returns.
- Reverse postorder: reverse order in which dfs() returns.

Topological order?

Graph 1

Graph 2

If there is a topological sort, does it matter which node we start with in DFS?

Code tracing


```
private void foo (Graph)G, int s) {
    Queue<Integer,q New Queue<Integer>();
    for (int v = 0; v < GN(); v++)
        distTo[v] = INFINITY,
    distTo[s] = 0;
    marked[s] = true;
                        replace by DiGraph
    q.enqueue(s);
    while (!q.isEmpty()) {
        int v = q.dequeue();
        for (int w : G.adj(v)) {
            if (!marked[w]) {
            edgeTo[w] = v;
            distTo[w] = distTo[v] + 1;
            marked[w] = true;
            q.enqueue(w);
        }
            }
    }
    }
```

What does the code do if vertex 0 is marked as s ?

Strong Components

Def. Vertices v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v.

Def. A strong component is a maximal subset of strongly-connected vertices.

Key property. Strong connectivity is an equivalence relation:

5 strongly-connected components

How to Find SCC's

Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in G are same as in G^{R}.

Kernel DAG. Contract each strong component into a single vertex.

Idea.

- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to $E+V$.

Computing SCC's

- Step 1: Compute the reverse post order of G^{R}
- Step 2: Visit G in the order of reverse post order found in step 1

G

$\mathbf{G}^{\text {R }}$

Minimum Spanning Tree (MST)

Facts and Questions

1. An undirected weighted graph
2. Connected
3. Find a subgraph that minimizes the total weight of edges
4. How many edges are in a MST?

Minimum Spanning Tree

Proposition: A connected graph with distinct edge weights has a unique MST
How to find it?

1. Sort all the edges $-\mathrm{E} \log \mathrm{E}$ or build a minPQ of edges
2. Find $\mathrm{V}-1$ smallest edges or do delMin , $\mathrm{V}-1$ times

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.
crossing edge connects

What is the min weighted edge crossing the cut
$\{2,3,5,6\}$?

Greedy MST algorithm

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until $V-1$ edges are colored black.

API's

```
public class Edge implements Comparable<Edge>
            Edge(int v, int w, double weight)
        int either()
        int other(int v)
        int compareTo(Edge that)
    double weight()
    String toString()
```

 public class MST
 MST(EdgeWeightedGraph G) constructor
Iterable<Edge> edges()
edges in MST
double weight()
weight of MST

Kruskal's

```
private Queue<Edge> mst = new Queue<Edge>();
public KruskalMST(EdgeWeightedGraph G)
{
    MinPQ<Edge> pq = new MinPQ<Edge>(G.edges());
    UF uf = new UF(G.V());
    while (!pq.isEmpty() && mst.size() < G.V()-1)
    {
        Edge e = pq.delMin();
        int v = e.either(), w = e.other(v);
        if (!uf.connected(v, w))
        {
        uf.union(v, w);
        mst.enqueue(e);
        }
    }
```


Kruskal code

```
public Kruska1MST(EdgeWeightedGraph G)
{
    MinPQ<Edge> pq = new MinPQ<Edge>(G.edges());
    UF uf = new UF(G.V());
    while (!pq.isEmpty() && mst.size() < G.V()-1)
    {
        Edge e = pq.delMin();
        int v = e.either(), w = e.other(v);
        if (!uf.connected(v, w))
        {
        uf.union(v, w);
        mst.enqueue(e);
        }
    }
}
```


Prim's Algorithm (lazy)

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

Lazy Prim's

```
public LazyPrimMST(WeightedGraph G)
{
    pq = new MinPQ<Edge>();
    mst = new Queue<Edge>();
    marked = new boolean[G.V()];
    visit(G, 0);
    while (!pq.isEmpty() && mst.size() < G.V() - 1)
    {
        Edge e = pq.delMin();
        int v = e.either(), w = e.other(v);
        if (marked[v] && marked[w]) continue;
        mst.enqueue(e);
        if (!marked[v]) visit(G, v);
        if (!marked[w]) visit(G, w);
    }
```

Proposition. Lazy Prim's algorithm computes the MST in time proportional to $E \log E$ and extra space proportional to E (in the worst case).

Pf.

operation	frequency	binary heap
delete min	E	$\log E$
insert	E	$\log E$

Prim's (eager implementation)

Eager solution. Maintain a PQ of vertices connected by an edge to T, where priority of vertex $v=$ weight of shortest edge connecting v to T.

- Delete min vertex v and add its associated edge $e=v-w$ to T.
- Update PQ by considering all edges $e=v-x$ incident to v
- ignore if x is already in T
- add x to PQ if not already on it
- decrease priority of x if $v-x$ becomes shortest edge connecting x to T

Prims Eager Trace

V	Edges	weight
A		
B		
C		
D		
E		
F		
G		

Implementing a PQ with decreaseKey

```
public class IndexMinPQ<Key extends Comparable<Key>>
```

```
        IndexMinPQ(int N)
        void insert(int i, Key key)
        void decreaseKey(int i, Key key)
boolean contains(int i)
    int de\Min()
boolean isEmpty()
    int size()
```

create indexed priority queue with indices $0,1, \ldots, N-1$
associate key with index i
decrease the key associated with index i
is i an index on the priority queue?
remove a minimal key and return its associated index
is the priority queue empty?
number of keys in the priority queue

The idea of decrease key

- Maintain parallel arrays keys[], pq[], and qp [] so that:
- keys[i] is the priority of i
- pq[i] is the index of the key in heap position i
- qp [i] is the heap position of the key with index i
- Use swim(qp[i]) to implement decreaseKey(i, key).

