Flipped lecture – L01

- Why flip?
 - Why not?
 - Find the most efficient way to deliver content
 - Improve the outcomes
 - Focus more on conceptual and conventional
 - Quick poll
- Format of the flipped Lecture
 - Mini lecture a quick overview of concepts (30 mins)
 - Directed Graphs, MST's
 - Group Worksheets (30 minutes)
 - Work with 2-3 students next to you
 - Discussion of Solutions (20 mins)

Time spent on videos

	7.14.5 Directed Graphs - Strong Components	100%
Ŭ		Total Spend Time : 197 hours 57 minutes 3 seconds
	7.14.4 Directed Graphs - Topological Sort	45.7%
	7.14.1 Directed Creeks Introduction	Total Spend Time : 90 hours 33 minutes 10 seconds
	7.14.1 Directed Graphs - Introduction	Total Spend Time : 87 hours 3 minutes 58 seconds
	7.14.3 Directed Graphs - digraph Search	40.4%
		Total Spend Time : 79 hours 55 minutes 6 seconds
	8.15.3 Minimum Spanning Trees - Edge Weighted Gr	29.7%
		Total Spend Time : 58 hours 50 minutes 53 seconds
	8.15.5 Minimum Spanning Trees - Prim's Algorithm	27.1%
_		Total Spend Time : 53 hours 40 minutes 58 seconds
	8.15.4 Minimum Spanning Trees - Kruskals Algorithm	24.2%
	8.15.2 Minimum Spanning Trees - Greedy Algorithms	18.3%
		Total Spend Time : 36 hours 19 minutes 26 seconds
	8.15.1 Minimum Spanning Trees - Introduction	18.3%
		Total Spend Time : 36 hours 15 minutes 21 seconds

API

public class Digraph

Digraph(int V)

Digraph(In in)

void addEdge(int v, int w)

Iterable<Integer> adj(int v)

int V()

int E()

Digraph reverse()

String toString()

Implementation

Implementation of a weighted digraph using Adjacency List represented by **Array of Bags** (flexible list length)

Order of Growth

representation	space	insert edge from v to w	edge from v to w?	iterate over vertices adjacent from v?
list of edges	Ε	1	Ε	Ε
adjacency matrix	V^2	1†	1	V
adjacency lists	E + V	1	outdegree(v)	outdegree(v)

Indegree and outdegree

- Indegree of a vertex v
 - Number of edges directed at the vertex v
 - Order of growth
 - adjacency list E+V
 - adjacency matrix V
- Outdegree of vertex v
 - Number of edges from the vertex v to other vertices
 - Order of growth
 - Adjacency list outdegree(v)
 - Adjacency matrix V

Directed graphs: quiz 1

Which is order of growth of running time to iterate over all vertices adjacent from v in a digraph using the adjacency-lists representation?

- **A.** indegree(v)
- **B.** *outdegree*(*v*)
- **C.** degree(v)
- **D.** *V*
- E. I don't know.

Topological Order

Proposition. A digraph has a topological order iff no directed cycle. Pf.

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

orderings

Orderings.

- Preorder: order in which dfs() is called.
- Postorder: order in which dfs() returns.
- Reverse postorder: reverse order in which dfs() returns.

Topological order?

If there is a topological sort, does it matter which node we start with in DFS?

Code tracing

What does the code do if vertex 0 is marked as s?

Strong Components

Def. Vertices v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v.

Def. A strong component is a maximal subset of strongly-connected vertices.

Key property. Strong connectivity is an equivalence relation:

How to Find SCC's

Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in G are same as in G^R .

Kernel DAG. Contract each strong component into a single vertex.

Idea.

how to compute?

- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to E + V.

Computing SCC's

- Step 1: Compute the reverse post order of G^R
- Step 2: Visit G in the order of reverse post order found in step 1

Minimum Spanning Tree (MST)

Facts and Questions

- 1. An undirected weighted graph
- 2. Connected
- 3. Find a subgraph that minimizes the total weight of edges
- 4. How many edges are in a MST?

Minimum Spanning Tree

Proposition: A connected graph with distinct edge weights has a unique MST

How to find it?

- 1. Sort all the edges E log E or build a minPQ of edges
- 2. Find V-1 smallest edges or do delMin , V-1 times

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

What is the min weighted edge crossing the cut {2,3,5,6}?

Greedy MST algorithm

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V 1 edges are colored black.

API's

public class Edge implements Comparable<Edge>

```
Edge(int v, int w, double weight)
     int either()
     int other(int v)
     int compareTo(Edge that)
  double weight()
  String toString()
   public class MST
                MST(EdgeWeightedGraph G)
Iterable<Edge> edges()
```

double weight()

weight of MST

constructor

edges in MST

Kruskal's

```
private Queue<Edge> mst = new Queue<Edge>();
public KruskalMST(EdgeWeightedGraph G)
{
   MinPQ<Edge> pq = new MinPQ<Edge>(G.edges());
   UF uf = new UF(G.V());
   while (!pq.isEmpty() && mst.size() < G.V()-1)</pre>
      Edge e = pq.delMin();
      int v = e.either(), w = e.other(v);
      if (!uf.connected(v, w))
      {
         uf.union(v, w);
         mst.enqueue(e);
      }
```

operation	frequency	time per op
build pq	1	Ε
delete-min	Ε	$\log E$
union	V	$\log^* V^\dagger$
connected	Ε	$\log^* V^\dagger$

Kruskal code

```
public KruskalMST(EdgeWeightedGraph G)
{
   MinPQ<Edge> pq = new MinPQ<Edge>(G.edges());
   UF uf = new UF(G.V());
   while (!pq.isEmpty() && mst.size() < G.V()-1)</pre>
   Ł
      Edge e = pq.delMin();
      int v = e.either(), w = e.other(v);
      if (!uf.connected(v, w))
      {
         uf.union(v, w);
         mst.enqueue(e);
      }
   }
}
```

Prim's Algorithm (lazy)

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V 1 edges.

Lazy Prim's

Proposition. Lazy Prim's algorithm computes the MST in time proportional to $E \log E$ and extra space proportional to E (in the worst case).

operation	frequency	binary heap
delete min	Ε	$\log E$
insert	Ε	$\log E$

Pf.

Prim's (eager implementation)

Eager solution. Maintain a PQ of vertices connected by an edge to *T*, where priority of vertex v = weight of shortest edge connecting v to *T*.

- Delete min vertex v and add its associated edge e = v w to T.
- Update PQ by considering all edges e = v x incident to v
 - ignore if x is already in T
 - add x to PQ if not already on it
 - decrease priority of x if v-x becomes shortest edge connecting x to T

Prims Eager Trace

V	Edges	weight
А		
В		
С		
D		
E		
F		
G		

Implementing a PQ with decreaseKey

public class IndexMinPQ<Key extends Comparable<Key>>

	<pre>IndexMinPQ(int N)</pre>	create indexed priority queue with indices 0, 1,, $N-1$
void	<pre>insert(int i, Key key)</pre>	associate key with index i
void	decreaseKey(int i, Key key)	decrease the key associated with index i
boolean	contains(int i)	is i an index on the priority queue?
int	<pre>delMin()</pre>	remove a minimal key and return its associated index
boolean	isEmpty()	is the priority queue empty?
int	<pre>size()</pre>	number of keys in the priority queue

The idea of decrease key

- Maintain parallel arrays keys[], pq[], and qp[] so that:
 - keys[i] is the priority of i
 - pq[i] is the index of the key in heap position i
 - qp[i] is the heap position of the key with index i
- Use swim(qp[i]) to implement decreaseKey(i, key).

