Flipped lecture — LO1
« Why flip?
— Why not?
— Find the most efficient way to deliver content
— Improve the outcomes
— Focus more on conceptual and conventional
— Quick poll
 Format of the flipped Lecture

— Mini lecture — a quick overview of concepts (30 mins)
- Directed Graphs, MST’s

— Group Worksheets (30 minutes)
 Work with 2-3 students next to you

— Discussion of Solutions (20 mins)

=/

"2

(W)

41

=/

(W)

1

=/

)

1

=

(W)

1

_\
H!,f'

#1

I
k!,f‘

1

—

{)

2

1

\=/

(m)

A

\=/

()

b

Time spent on videos

7.14.5 Directed Graphs - Strong Components

Tiotal Spand Thme : 197 howrs 57 milnuies 3 secinds

7.14.4 Directed Graphs - Topological Sort 457

J
o

Tivtal Snend Thrnes - 90 hours 33 manuies 10 sasands

7.14.1 Directed Graphs - Introduction 445
Tiotal Spend The © 87 hours 3 minuiss 58 seconds

7.14.3 Directed Graphs - digraph Search A0 4%

Tioial Spand Thmea - 79 hours 55 minuies 5 sacands

B.15.3 Minimum Spanning Trees - Edge Weighted Gr._. 0.7

4
o

Tiotal Spend Time - 58 hours 50 minuies 53 saconds

E.15.5 Minirmum Spanning Trees - Prim's Algorthm T 1%

Tioisl Spand Times © 53 hours &0 mimres 58 secands

B.15.4 Minimurm Spanning Trees - Kruskals Algornthm
B.15.2 Mininnur Spanning Trees - Greedy Algonthms 18.3%

Tiotal Spend Thme 35 hours 19 mnuies 25 saconds
B.15.1 Minirnurm Spanning Trees - Introduction 18.3%

Total Spand Tmse - 36 hours 15 miinuies 21 secands

API

public class Digraph

Digraph(int V)
Digraph(In in)
void addEdge(int v, int w)
Iterable<Integer> adj(int v)
int VO
int EQ
Digraph reverse()

String toString()

adj[]

=] O W s W N e D

WZZAANNN

Implementation

™1 6|0].58 0/2].26 .38—{0|7]|.16 Bag
objects

™S1(3].29 1/2/(.36 19H{1(5].32

S 6|2].40 2| ¥].34 .36 0[2].26 9 by

=l 316(.52 1|3|.29 17

~™~16(4](.93 0[4].38 .37 4(51.35

G Ghlal Lol s

~™6[4].93 6/0(.58 52 —|6|2]|.40

~(2(7].34 1/7(.19 16 —{5|7].28 .28

Implementation of a weighted digraph using
Adjacency List represented by Array of Bags

(flexible list length)

Order of Growth

insert edge edge from iterate over vertices
representation space
from v to w v to w? adjacent from v?
list of edges

adjacency matrix V2 1t 1 Vv

adjacency lists E+V 1 outdegree(v) outdegree(v)

Indegree and outdegree

* |Indegree of a vertex v
— Number of edges directed at the vertex v

— Order of growth
e adjacency list - E+V
e adjacency matrix - V

e Qutdegree of vertex v

— Number of edges from the vertex v to other vertices

— Order of growth
e Adjacency list - outdegree(v)
e Adjacency matrix - V

Directed graphs: quiz 1

Which is order of growth of running time to iterate over all vertices
adjacent from v in a digraph using the adjacency-lists representation?

A. indegree(v)
outdegree(v)
degree(v)

V

m O 0O W

I don't know.

Topological Order

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

« If directed cycle, topological order impossible.

« If no directed cycle, DFS-based algorithm finds a topological order.

orderings

Orderings.
« Preorder: order in which dfs(Q) is called.
« Postorder: order in which dfs() returns.
« Reverse postorder: reverse order in which dfs() returns.

Topological order?

Graph 1

If there is a topological sort, does it
matter which node we start with in DFS?

Code tracing

private void foo
Queue<Inte

, int 8) {
ew Queue<Integer>();

for (int v = 0; v <
@ distTolv] = INFINIT
distTols] = 0;
@ marked[s] = true;
@ e q.enqueue (8) ;

while (!g.isEmpty()) {
0 @ int v = q.dequeue();
for (int w : G.adj(v)) {
Y if (!marked[w]) {
®/ @ edgeTolw] = v;
distTolw] = distTolv] + 1;

marked [w] true;
q.enqueue (W) ;

replace by DiGraph

What does the code do if vertex O is marked
as s?

Strong Components

Def. Vertices v and w are strongly connected if there is both a directed path
from v to w and a directed path from w to v.

Def. A strong component is a maximal subset of strongly-connected vertices.

Key property. Strong connectivity is an equivalence relation:

How to find
strong
components?

5 strongly-connected components

How to Find SCC’s

Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in G are same as in G-,

Kernel DAG. Contract each strong component into a single vertex.

how to compute?
Idea. B

- Compute topological order (reverse postorder) in kernel DAG.
e Run DFS, considering vertices in reverse topological order.

Proposition. Kosaraju-Sharir algorithm computes the strong components of
a digraph in time proportional to E + V.

Computing SCC’s

Step 1: Compute the reverse post order of G®

Step 2: Visit G in the order of reverse post order found in step 1

Minimum Spanning Tree (MST)

Facts and Questions

1. An undirected weighted graph

2. Connected

3. Find a subgraph that minimizes the total weight of edges
4. How many edges are in a MST?

Minimum Spanning Tree

4 o 24

6 23

Proposition: A connected graph with distinct edge weights has a unique MST

How to find it?
1. Sort all the edges - E log E or build a minPQ of edges
2. Find V-1 smallest edges or do delMin , V-1 times

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.
Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

crossing edge connects
a gray vertex with a white vertex

20

minimum-weight crossing edge
must be in the MST

3
2 @ What is the min weighted
edge crossing the cut

)
2 {2,3,5,6}?
(M) @
3

Greedy MST algorithm

« Start with all edges colored gray.
« Find cut with no black crossing edges; color its min-weight edge black.
* Repeat until -1 edges are colored black.

APl’s

public class Edge implements Comparable<Edge>

Edge(int v, int w, double weight)
int either()
int other(int v)

int compareTo(Edge that)
double weight()

String toString()

public class MST

MST(EdgeWeightedGraph G) constructor

Iterable<Edge> edges() edges in MST

double weight() weight of MST

Kruskal’s
private Queue<Edge> mst = new Queue<Edge>();
1 E

build pq
public KruskalMST(EdgeWeightedGraph G)
{ delete-min E log E
MinPQ<Edge> pg = new MinPQ<Edge>(G.edges()); union 4 log* V*
connected E log* V¥

UF uf = new UF(G.V());
while (!pq.isEmpty() && mst.size() < G.V()-1)
{
Edge e = pg.delMin();
int v = e.either(), w = e.other(v);
if (luf.connected(v, w))
{
uf.union(v, w);
mst.enqueue(e);
}
}

Kruskal code

public KruskalMST(EdgeWeightedGraph G)

{

MinPQ<Edge> pg = new MinPQ<Edge>(G.edges());

UF uf = new UF(G.VQ);
while (!pqg.isEmpty() && mst.size() < G.V()-1)
{
Edge e = pg.delMin();
int v = e.either(), w = e.other(v);
if (luf.connected(v, w))
{
uf.union(v, w);
mst.enqueue(e);

}

Prim’s Algorithm (lazy)

e Start with vertex 0 and greedily grow tree T.

 Addto T the min weight edge with exactly one endpoint in
T

 Repeat until V-1 edges.

Lazy Prim’s

public LazyPrimMST(WeightedGraph G)
{

pq = new MinPQ<Edge>();

mst = new Queue<Edge>();

marked = new boolean[G.V()]: private void visit(WeightedGraph G, int v)

L] - {
.
visit(G, 0); marked[v] = true;
while (!pg.isEmpty() && mst.size() < G.V(Q - 1) for (tdge e : G.2d(V))
{ if (!marked[e.other(v)1)
— '
Edge e = pq.delMin(Q); pq.insert(e);
int v = e.either(), w = e.other(v); .E I
if (marked[v] &R marked[w]) continue:
_

mst.engueue(e);
if (Imarked[v]) visit(G, v): —
if (Imarked[w]) wvisit(G, w):

Proposition. Lazy Prim's algorithm computes the MST in time proportional
to Elog E and extra space proportional to E (in the worst case).

delete min E log E

insert E log E

Prim’s (eager implementation)

Eager solution. Maintain a PQ of vertices connected by an edge to 7,
where priority of vertex v = weight of shortest edge connecting v to T.
« Delete min vertex vand add its associated edge e =v-w to T.
« Update PQ by considering all edges e = v—x incident to v
— ignore if x is already in T

— add x to PQ if not already on it
— decrease priority of x if v—x becomes shortest edge connectingxto T

Prims Eager Trace

/ . 7 ‘
3 @

.-"))f(;:.

2/

(5 f

Implementing a PQ with decreaseKey

public class IndexMinPQ<Key extends Comparable<Key>>

void

void

boolean

int

boolean

int

create indexed priority queue

IndexMinPQ(int N
Q() with indices 0, 1, ..., N=1

insert(int i, Key key) associate key with index i
decreaseKey(int i, Key key) decrease the key associated with index i
contains(int i) is i an index on the priority queue?
delMinO) remove a minimal key and return its

associated index

isEmpty QO is the priority queue empty?

size() number of keys in the priority queue

The idea of decrease key

« Maintain parallel arrays keys[], pq[], and qp[] so that:
— keys[i] is the priority of i
— pq[i] is the index of the key in heap position i
— qgp[i] is the heap position of the key with index i

e Use swim(gp[i]) to implement decreaseKey(i, key).

i 01 2 3 45 6 7 8
keysfil] A°'S 0 R T I (N) G -
palil - 0(6) 7 2 1 5 4 3
gp[il 1 5 4 8 7 6 (2) 3 -

