
Solutions to week5 flipped worksheet

1. a. T U V

b. B R R B

c. 0 1 2

 0 0 3

0 0 3

2. a. Use heapsort to sort both arrays a[] and b[]. No extra space is needed. Now compare a[i] to

b[i]. If a[] and b[] are rearrangements of each other, we will have sorted a[] and b[] the same

elements in all positions

b. Hash all a[] into a hashtable (need linear extra space). Now for each b[i] check if b[i] is in the

hashtable. Since all elements are distinct, this test should tell you if elements of a[] are the same

as elements of b[]

3. A D X

4. a. open – do not know any sub quadratic algorithm for solving 3-sum problem

b. Possible – We can hash a[] into a hash table. Then for each pair (a[i], a[j]) look for an element

a[k] = -(a[i]+a[j]). There are n
2
 pairs and hence we can solve 3-sum problem in quadratic time

with linear extra space.

c. Possible. Use the amortized array implementation of a stack. We can use two such stacks,

enque_stack and deque_stack. We enque elements (push) into enque_stack and deque

elements of deque_stack (pop).

d. Possible. Since the tree is balanced and has height log N, just go all the way to right to find the

max

e. Impossible. If so, we can build a PQ and do delMax in 2/3 N log N time. This is less than the

sorting lower bound.

f. Possible. Use Dijkstra’s 3-way partitioning

g. Open – holy grail of sorting. Mergesort is one such thing, but need extra space

h. Impossible – need to traverse the tree k times to find this and k can be n/2 and hence linear in

worst case.

5. a. Possible, Use weighted union-find

b. Impossible. If this is possible, we will have a sorting algorithm that satisfies T(N) = 2T(N/2) + ½

N and can lead to T(N) ~ ½ N log N (not possible)

c. Impossible. If we can build a BST in 17N compares, we can sort in linear time.

d. Possible. Use bottom-up heap construction

e. Possible. This is called mergesort

f. Possible. Do binary search to find the first instance of the key and again binary search to find

the last instance of the key. Find the difference between the two indices in ~ 2 log N time.

