Week 03

Mergesort - top-down, bottom-up,
qguicksort- 2-way, 3-way, stability,
order of growth

Mergesort Guide

Mergesort. Merge left, merge right, merge.

Merge. Understand how to carry out the merge operation.
How many compares does it use when comparing two
arrays of size N in the best case? In the worst case?

Mergesort order of growth. Understand how to show that
the order of growth of the number of compares is N Ig N.
Understand why the entire algorithm is also order N Ig N.

Mergesort compare bounding. Know why the best case is ™
1/2 N Ig N and the worst case is ~ N Ig N compares.

Mergesort properties. Mergesort is stable (why?).
Mergesort uses N extra memory (why?). Does mergesort
do particularly well on already sorted arrays? Partially
ordered arrays?

Mergesort Basics

Divide and Conquer

— Key idea: two sorted arrays of size N/2 can be merged in
linear time to get one sorted array of size N

Top-down mergesort

— split (recursion) and merge (iteration)
Understand how it works

Work out a simple example

- [5,4,2,1,3,6,5,3]

How many compares? How many merge operations?
For an array of size N?

The top-down code

private static void merge{Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{

For (int K = lo: K <= hi: E+e)d
aux[k] = afk]: el

int 1 = lo, § = midel;
for (int k = To* k <= hi: K+ed

{
if (i = mid) alk] = aux[fjes+]: merge
elee iF [= hi) alk] = aux[i+s]:
elae if (Tessfaux[y], sux[i])) a[k] = aux[jes]:
alse afk] = aux[iss]:
}

Recursive Mergesort method

private statie void sort(Comparable[] a, Comparable[] aux, int o, iat hi)
{

iF (hi o= l&) retwurn;

int mid = & « (hi - la) / 2;

sort{a, aux, la, mid);

sortifa, aux, midel, Ri):

mergela, aux, la, mid, hi);

Order of Growth

* Understand how to show that the order of growth of the number of compares is N
lg N. Understand why the entire algorithm is also order N Ig N

Sorting summary

Lol N exchanges

wae far small &
ar partizlly ordersd

¥ ¥ N i 2 B

Light code;

sUbsrladralk

N log ¥ guarantees;

- WNIgN NIgN Nigh
o E E stable

imprones menpeson

¥ ; T I..l / -y
g e g N when pregxisting order

w ¥ N NigN NlgN holy sorting grail

Bounding Compares

~1/2 N Ig N <= number of compares <= ~ N Ig N compares
Best case: 2 N log N, worst case: N log N

What input provides a best case performance?

What input provides a worst case
performance?

Things to know

Mergesort is stable (why?).
Mergesort uses N extra memory (why?).

Does mergesort do particularly well on
already sorted arrays?

Partially ordered arrays?

Quicksort Guide

Quicksort. Partition on some pivot. Quicksort to the left of the pivot. Quicksort to the right.

Partitioning. Understand exactly how to carry out 2-way partitioning as discussed in class. Be
able to recognize Dijkstra's 3-way partitioning as discussed in the book.

Quicksort order of growth. Understand how to show that in the best case, quicksort is N Ig
N, and in the worse case is N*2. Shuffling is needed to probabilistically guarantee 2 NIn N
behavior.

Quicksort compare counting. Know why the best case is “N Ig N compares and worst case is
~1/2 NA2. Despite the greater number of compares, quicksort is usually faster than
mergesort. Be familiar with the fact that shuffling yields 2N In N compares on average (but
you don't need to fully digest this proof -- especially solution of the difficult recurrence
relation, as that involves discrete math that is beyond the scope of the course).

Pivot choice. Understand how the pivot affects the size of the subproblems created after
partitioning.

Quicksort properties. Quicksort is not stable but it is in-place (uses no more than log N
memory).

Practical improvements. Cutoff to insertion sort. Using 3-way partitioning to attain faster
performance for arrays with a constant number of keys.

Quick sort code

e Partition onsome pivot. Quicksort to the left of the pivot. Quicksort to the right.
* Do anexample:[3,5,1,2,6,4,5]

while (less(a[++i], a[lo1))

s B2 : : find item on left to swap
if (i == hi) break;

while (less(a[lo]l, a[--31)) find item on right to swap

if (j == 10) break;

3-way partitioning

 Be able to recognize Dijkstra's 3-way partitioning as discussed in the book.
* Apply 3-way quicksort to

- [542,1,3,6,53] 2-way sort is bad with Duplicate
keys. Use 3-way partitioning
private static void sort(Comparable[] a, int lo, int hi) inStead

{
if (hi == 10) return:
int Tt = lo, gt = hi;
Comparable v = a[lo]l;
int 1 = lo;
while (i <= gt)

{
int cmp = a[i].compareTo(v);
if (cmp < 0) exch(a, Tt++, i++);
else if (cmp > 0) exch(a, i, gt--);
else 14++;
}
before [V]
sort(a, lo, 1t - 1); le b
sort{a, gt + 1, hi); during [<v | =V | [5v |
¥ I1l: : gll:
after | = | =\ | = |

[| | |
la 1t qr hi

Order of Growth

e Understand how to show that in the best case,
quicksortis N Ig N
— Provide an input that gives the best case

* and in the worse case is N2
— Provide an input that results in worst case

e Shuffling is needed to probabilistically
guarantee 2 N In N behavior.

— No need to know the proof, but look at the slides

Quicksort compare counting

 Know why the best case is “N lg N compares and
worst case is ~1/2 N/2.

* Despite the greater number of compares,
quicksort is usually faster than mergesort.

* Be familiar with the fact that shuffling yields 2N In
N compares on average (but you don't need to
fully digest this proof -- especially solution of the
difficult recurrence relation, as that involves
discrete math that is beyond the scope of the
course).

Pivot Choice

* Pivot choice. Understand how the pivot
affects the size of the sub problems created
after partitioning.

 What if the pivot is

— Median of the three, first element, middle
element, last element?

Properties of Quicksort

e Quicksort is not stable but it is in-place (uses
no more than log N memory).

Cut off to Insertion sort

* Practical improvements. Cutoff to insertion
sort. Using 3-way partitioning to attain faster
performance for arrays with a constant
number of keys.

private static void sort(Comparable[] a, int lo, int hi)

{
if (hi <= lo + CUTOFF - 1)
{
Insertion.sort(a, lo, hi);
return;
}

int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

