
COS 226 Data Structures and Algorithms
Spring 2016 - Flipped Lecture Handout

Week 3 Flipped Activities

1. Sorting Invariants

The column on the left is the original input of strings to be sorted or shuffled; the
column on the right are the strings in sorted order; the other columns are the contents
at some intermediate step during one of the algorithms listed below. Match up each
algorithm. You may not be able to classify some of them. Leave them as cannot de-
termine.

(0) Original input (1) Sorted (2) Selection sort (3) Insertion sort (4) Mergesort (top-
down) (5) Mergesort (bottom-up) (6) Quicksort (standard, no shuffle) (7) Quicksort
(3-way, no shuffle) (8) Cannot determine

2. Parsimonious Sorting Algorithms
A sorting algorithm is parsimonious if no pair of items is compared more than once.
Circle the following sorting algorithms (as implemented in lecture and the textbook)
if they are parsimonious; cross them out if they are not parsimonious.

(a) insertion sort

(b) selection sort

(c) top-down mergesort

1



3. Sorting Equal Keys
Suppose that you are sorting an array containing the following 7 equal keys (the sub-
script is not part of the keyits purpose is to uniquely identify each of the equal keys).
A0 A1 A2 A3 A4 A5 A6

What is the result of running the standard version (from the Sedgewick textbook) of
each of the following sorting algorithms?

(a) Insertion Sort

(b) Selection Sort

(c) 2-way Quick Sort

(d) 3-way Quick Sort

(e) top-down merge sort

(f) bottom-up merge sort

4. More Sorting

(a) Modern computers have memory caches, which speed up reads and writes if they
are to locations near recently-accessed memory. This makes sequential access to
memory faster, in general, than random access. Circle the sorting algorithm below
that you would expect to benefit least from caching?
insertion sort mergesort quicksort

(b) Modern computers also have multiple processes and can take advantage of parallel
computing. Circle the sorting algorithm below that you would expect to benefit
from parallelism?
insertion sort mergesort quicksort

(c) You are managing the accounts for BigIBankCo, and have an array of customers
together with their balances. You would like to rearrange the array such that the
richest customers (those with balances greater than 1 million) are grouped at the
beginning, with everyone else at the end.

Describe an algorithm for performing this task in linear time, and using only constant
extra memory. Adhering to the spirit of code reuse, adapt an algorithm from class and
describe only the changes you would make.

2



5. Identifying Sorting Algorithms
Awaking drenched in sweat one night, you clearly see your path to fame and fortune.
You will build a robotic rhinoceros and tour the country singing songs about nature
to children, who will be allowed to play and interact with the rhinoceros. While a real
rhinoceros would be too dangerous, you believe a rhinoceros can be kept in check. In
each of the situations below, which sort would you use? In all cases, assume memory
is not an issue, and that the goal is to minimize run time so that the rhino can react
as quickly as possible to any potential trouble. Choose from Mergesort, Insertion sort,
Selection sort,Knuth shuffle Answers may be used many times.

(a) The rhinoceros is outfitted with a large number of sensors, each of which gener-
ates objects of type Observation. Observations include many instance variables,
taken at fixed time intervals, including importance, timestamp, pressure, tem-
perature, light intensity, etc. These are placed in an unsorted array, and every
time 1,000,000 Observations are generated, they are delivered to a central pro-
cessing unit that sorts,,the Observations by the importance field, which is of type
double. What sort should you use to minimize the run time required to sort all
Observations by importance?

(b) Due to some close calls, youre going to refactor the sorting process to deal with
a rare but dangerous situation where some Observations are generated with an
incorrect importance value. For engineering reasons not described here, you can
detect these by sorting by the timestamp and importance of each Observation.
Instead of importance, you first want to sort by the timestamp of each Observa-
tion. The timestamp is of a comparable type called DateTime. What sort should
you use to minimize the run time required to sort all 1000000 Observations by
timestamp?

(c) After sorting by time stamp, you want to sort by importance such that all the
objects of the same timestamp stay clustered. What sort should you use to
minimize the run time while maintaining this clustering?

(d) You iterate through the array, update the importance of the very rare bad Ob-
servations with a new value, and sort once more. What sort do you use to put
items in order of importance while minimizing run time?

3


