
Week 03
Mergesort - top-down, bottom-up, quicksort- 2-way, 3-way, stability, order of growth

Mergesort Guide
• Mergesort. Merge left, merge right, merge.
• Merge. Understand how to carry out the merge operation. How many compares does it use when comparing two arrays of size N in the best case? In the worst case?
• Mergesort order of growth. Understand how to show that the order of growth of the number of compares is N lg N. Understand why the entire algorithm is also order N lg N.
• Mergesort compare bounding. Know why the best case is ~ 1/2 N lg N and the worst case is ~ N lg N compares.
• Mergesort properties. Mergesort is stable (why?). Mergesort uses N extra memory (why?). Does mergesortdo particularly well on already sorted arrays? Partially ordered arrays?

Mergesort Basics
• Divide and Conquer

– Key idea: two sorted arrays of size N/2 can be merged in linear time to get one sorted array of size N
• Top-down mergesort

– split (recursion) and merge (iteration)
• Understand how it works
• Work out a simple example

– [5,4,2,1,3,6,5,3]
• How many compares? How many merge operations? For an array of size N?

The top-down code

Real work gets done in merge

Recursive Mergesort method

Order of Growth
• Understand how to show that the order of growth of the number of compares is N lg N. Understand why the entire algorithm is also order N lg N

Bounding Compares
• ~ 1/2 N lg N <= number of compares <= ~ N lg N compares
• Best case: ½ N log N, worst case: N log N

• What input provides a best case performance?
• What input provides a worst case performance?

Things to know
• Mergesort is stable (why?).
• Mergesort uses N extra memory (why?).
• Does mergesort do particularly well on already sorted arrays?
• Partially ordered arrays?

Quicksort Guide
• Quicksort. Partition on some pivot. Quicksort to the left of the pivot. Quicksort to the right.
• Partitioning. Understand exactly how to carry out 2-way partitioning as discussed in class. Be able to recognize Dijkstra's 3-way partitioning as discussed in the book.
• Quicksort order of growth. Understand how to show that in the best case, quicksort is N lgN, and in the worse case is N^2. Shuffling is needed to probabilistically guarantee 2 N ln N behavior.
• Quicksort compare counting. Know why the best case is ~N lg N compares and worst case is ~1/2 N^2. Despite the greater number of compares, quicksort is usually faster than mergesort. Be familiar with the fact that shuffling yields 2N ln N compares on average (but you don't need to fully digest this proof -- especially solution of the difficult recurrence relation, as that involves discrete math that is beyond the scope of the course).
• Pivot choice. Understand how the pivot affects the size of the subproblems created after partitioning.
• Quicksort properties. Quicksort is not stable but it is in-place (uses no more than log N memory).
• Practical improvements. Cutoff to insertion sort. Using 3-way partitioning to attain faster performance for arrays with a constant number of keys.

Quick sort code
• Partition on some pivot. Quicksort to the left of the pivot. Quicksort to the right.
• Do an example:[3,5,1,2,6,4,5]

3-way partitioning
• Be able to recognize Dijkstra's 3-way partitioning as discussed in the book.
• Apply 3-way quicksort to

– [5,4,2,1,3,6,5,3] 2-way sort is bad with Duplicate keys. Use 3-way partitioning instead

Order of Growth
• Understand how to show that in the best case, quicksort is N lg N

– Provide an input that gives the best case
• and in the worse case is N^2

– Provide an input that results in worst case
• Shuffling is needed to probabilistically guarantee 2 N ln N behavior.

– No need to know the proof, but look at the slides

Quicksort compare counting
• Know why the best case is ~N lg N compares and worst case is ~1/2 N^2.
• Despite the greater number of compares, quicksort is usually faster than mergesort.
• Be familiar with the fact that shuffling yields 2N ln N compares on average (but you don't need to fully digest this proof -- especially solution of the difficult recurrence relation, as that involves discrete math that is beyond the scope of the course).

Pivot Choice
• Pivot choice. Understand how the pivot affects the size of the sub problems created after partitioning.
• What if the pivot is

– Median of the three, first element, middle element, last element?

Properties of Quicksort
• Quicksort is not stable but it is in-place (uses no more than log N memory).

Cut off to Insertion sort
• Practical improvements. Cutoff to insertion sort. Using 3-way partitioning to attain faster performance for arrays with a constant number of keys.

