
COS 226 Data Structures and Algorithms
Spring 2016 - Flipped Lecture Handout

Week 2 Flipped Activities

1. Understanding Linked Lists and Array Implementation of Stacks

(a) What are the advantages and disadvantages of using a linked list vs array when
implementing a stack?

(b) Discuss the exact memory requirements for implementing a stack of N nodes using
an array and implementing the same with a linked list. Assume that each node
takes a total of M bytes.

2. Amortized Analysis

(a) What is the best, worst and amortized cost of push and pop operations in a
resizing array using doubling principle.

(b) Suppose array resizing is done by increasing the array size by 2 when the array is
full. What is the average cost of M push operations?

3. Algorithm Design
Inversions. Design a subquadratic algorithm that counts the number of inversions in
an array.

4. Cycles in Linked Lists
Design an algorithm that can detect a cycle in a linked list. You can only use a constant
amount of extra memory and the algorithm must run in linear time.

1



5. Sorting with Just two keys

(a) Device a sorting algorithm that runs in linear time, if the array only has two
distinct keys.

(b) Formulate and validate hypothesis about the running time of insertion and se-
lection sort for arrays that contain just two key values, assuming that they are
equally likely to occur.

6. Queue using Circular Linked List Write a queue (of Strings) implementation that
uses a circular linked list (i.e. last.next = first). Show the implementation of the
methods enqueue and dequeue.

private class Node

{

String item;

Node next;

}

private Node first, last;

void enqueue(String item);\\

String dequeue();\\

2



7. Randomized Queues and Deques Assignment

Write a generic data type for a deque and a randomized queue. The goal of this
assignment is to implement elementary data structures using arrays and linked lists,
and to introduce you to generics and iterators.

Dequeue. A double-ended queue or deque (pronounced ”deck”) is a generalization of
a stack and a queue that supports adding and removing items from either the front or
the back of the data structure. Create a generic data type Deque that implements the
following API:

public class Deque<Item> implements Iterable<Item> {

public Deque() // construct an empty deque

public boolean isEmpty() // is the deque empty?

public int size() // return the number of items on the deque

public void addFirst(Item item) // add the item to the front

public void addLast(Item item) // add the item to the end

public Item removeFirst() // remove and return the item from the front

public Item removeLast() // remove and return the item from the end

public Iterator<Item> iterator() // return an iterator over items in order from front to end

public static void main(String[] args) // unit testing (required)

}

Performance requirements. Your deque implementation must support each deque
operation (including construction) in constant worst-case time and use space linear in
the number of items currently in the deque. Additionally, your iterator implementation
must support each operation (including construction) in constant worst-case time.
Randomized queue. A randomized queue is similar to a stack or queue, except

that the item removed is chosen uniformly at random from items in the data structure.
Create a generic data type RandomizedQueue that implements the following API:

public class RandomizedQueue<Item> implements Iterable<Item> {

public RandomizedQueue() // construct an empty randomized queue

public boolean isEmpty() // is the queue empty?

public int size() // return the number of items on the queue

public void enqueue(Item item) // add the item

public Item dequeue() // remove and return a random item

public Item sample() // return a random item (but do not remove it)

public Iterator<Item> iterator() // return an independent iterator over items in random order

public static void main(String[] args) // unit testing (required)

}

Performance requirements. Your randomized queue implementation must support
each randomized queue operation (besides creating an iterator) in constant amortized
time and and use space linear in the number of items currently in the queue. That
is, any sequence of M randomized queue operations (starting from an empty queue)
must take at most cM steps in the worst case, for some constant c. Additionally, your
iterator implementation must support next() and hasNext() in constant worst-case
time and construction in linear time; you may use a linear amount of extra memory
per iterator.

3


