
1. (a) A linked list provides flexible allocation of memory using smaller blocks of nodes. 

The arrays require allocation of a contiguous block of memory. The linked list requires 

the extra 8 bytes to hold a reference to each node. LL’s are also prone to programmer 

errors if LL is not manipulated correctly. 

(b) An array implementation of a stack of Nodes of size M each = 24 + N*M. The LL 

implementation requires (8(item) + 8(next) + 16(obj)) = 32 bytes for each node 

(assuming node is not an inner class. Otherwise add 4). So we need 32N + N*M(this is 

for the actual objects referenced by the Item)  

 

2. Amortized Cost  (a) best case – stack has enough space – O(1) 

    worst case – stack has no space. Need to double the space and write all the elements 

– O(N) 

    Average case – O(1)  can show this as amortized cost 

 

(b)  Assume the array size is i when needed to resize by 2. We need to find the cost of 

doing M operations. Suppose when the array size is i = 2K (since we are incrementing by 

2, it is always a multiple of 2). The biggest cost is when the array go from i = 2k to i 

=2K+1. You will have to copy the old array of size I = 2K into the new array. This will have 

to be done M/2 times. So we have Sum(2k, k=1,2,…M/2) ~ ¼ M
2
. hence the average cost 

of M operations is M
2
/M = M 

 

3. Algorithm Design: Counting Inversions.  Divide and conquer. Suppose we have an array 

of size N. Break the array into two arrays of size N/2. Say we have A = [A1  A2]. Suppose 

you want to know the number of inversions between A1 and A2. If we sort A1 (say in N 

log N time), We can find the inversions between A1 and A2 in linear time. So we write a 

recursive equation to describe our algorithm.  Let T(N) be the cost to find inversions in 

an array of size N. Then we can describe the relation as T(N) = 2 T(N/2) + cN (some linear 

cost to find the inversions between the two arrays) 

By solving T(N) = 2 T(N/2) + N  we get T(N) ~ O(N log N) 

 

4. Finding Cycles.  In this problem we will assume that we do not know the size of the list 

(if so, it is easy to find by counting). Now define two pointers, ptr1 and ptr2 that startd 

from first and advance by one node and two nodes respectively. 

ptr1 = ptr1.next  and  ptr2 = ptr2.next.next 

We will argue that if there is a cycle, ptr1 will at some point will meet ptr2 and if there is 

no cycle, ptr1 and ptr2 will never meet (ptr2 will end sooner). How is this possible? Just 

intuition is good enough here. No mathematical proof necessary. For those who are 



mathematically inclined, Since 1 and 2 are relatively prime, we can find two integers p 

and q such that, 1.p + 2*q = 1(mod N).  So we claim no matter when they enter the loop, 

at some point they will come together at 1 mod N (1 mod N is when a number is divided 

by N, the remainder is 1).  

eg:  suppose the cycle length is 3. 

ptr1 will hit the following sequence:  1,2,3,1,2,3,1,2,3 

ptr2 will hit the following sequence:  1 3 2 1 3 2 1 3  2 

 

Follow up question: What is we decide to send ptr1 by 2 and ptr2 by3? Will the 

argument still work? 

 

5. Sorting with Just Two Keys  

Consider any array with just 2 keys:  a  b  a  a  b  a  a  b  a  a  a .. b 

Have a right pointer to last element and a left pointer to the first element. Consider an 

algorithm like this. Let’s make it easier by knowing what the bigger element is. if the 

keys are uniformly distributed, you should be able to find this quite fast in constant 

time. Now here is the algorithm 

i. if right = max  , move left by 1 

ii. if left = min, move right by 1 

iii. if right < left, swap(left, right), right—and left++ 

iv. if right > left, left++, right-- 

(b) What happens to insertion and selection sorts if there are only two keys and they are 

uniformly distributed? (note that we do not modify the selection and insertion sorts. we 

just need to analyze what happens) 

Selection Sort :  no change in complexity, since we find min and swap, It would still be ~ 

½ N
2
 

Insertion Sort: Since keys are equally likely, in each iteration of insertion sort, say you 

are trying to insert into a sorted array of size i, we can assume that half the A’s are in 

the beginning of sorted part and the other half are B’s. So if you are inserting an A, you 

will need to do no more than i/2 work and if you are inserting a B, you will do no work. 

Assuming half of the unsorted is A and other half is B (uniformly distributed 

assumption), we will do i/2 work for (n-i)/2 A elements, and 1 work for (n-i)/2 , B 

elements. So we have a total of = sum( i/2*(n-i)/2 + 1*(n-i)/2) work to do. Left as an 



exercise (do not worry since this is all additional stuff, that is not required to pass the 

course) 

 


