
COS 226 Algorithms and Data Structures Fall 2012

Midterm

This test has 9 questions worth a total of 55 points. You have 80 minutes. The exam is closed
book, except that you are allowed to use a one page cheatsheet. No calculators or other electronic
devices are permitted. Give your answers and show your work in the space provided. Write out
and sign the Honor Code pledge before turning in the test.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Problem Score Problem Score
0 5
1 6
2 7
3 8
4

Sub 1 Sub 2

Total

Name:

Login ID:

Room:

Precept: P01 F 11 Maia Ginsburg
P02 F 12:30 Diego Perez Botero
P03 F 1:30 Diego Perez Botero
P03B F 1:30 Dushyant Arora
P04 Th 2:30 Maia Ginsburg
P04A Th 2:30 Dan Larkin

1



2 PRINCETON UNIVERSITY

0. Miscellaneous. (1 point)

In the space provided on the front of the exam, write your name and Princeton NetID; circle
your precept number; write the name of the room in which you are taking the exam; and
write and sign the honor code.

1. Union find. (4 points)

Circle the letters corresponding to id[] arrays that cannot possibly occur during the execution
of the weighted quick union algorithm.

0 1 2 3 4 5 6 7 8 9

----------------------------

A. a[i]: 8 0 4 0 0 4 0 4 2 0

B. a[i]: 4 1 8 2 1 5 1 1 4 5

C. a[i]: 3 3 6 9 3 6 3 4 1 9

D. a[i]: 2 1 1 1 1 1 1 2 1 7



COS 226 MIDTERM, FALL 2012 3

2. Eight sorting algorithms. (8 points)

The column on the left is the original input of strings to be sorted or shuffled; the column
on the right are the strings in sorted order; the other columns are the contents at some
intermediate step during one of the algorithms listed below. Match up each algorithm by
writing its number under the corresponding column. Use each number exactly once.

ENYA ABBA INXS DIDO BUSH BECK ABBA BLUR ABBA ABBA

KISS ACDC HOLE CARS DIDO DIDO ACDC ABBA ACDC ACDC

INXS BECK FUEL BECK CARS CARS BUSH DIDO BLUR BECK

STYX BLUR ENYA ACDC ENYA ACDC ENYA FUEL BUSH BLUR

SOAD BUSH ENYA BLUR BECK BUSH FUEL BUSH ENYA BUSH

ACDC CARS DIDO ABBA ACDC ABBA INXS ACDC FUEL CARS

KORN DIDO BUSH BUSH BLUR BLUR KISS ENYA INXS DIDO

FUEL ENYA BECK ENYA ABBA ENYA KORN HOLE KISS ENYA

BUSH ENYA ABBA ENYA ENYA INXS PINK ENYA KORN ENYA

ABBA FUEL ACDC WHAM FUEL KISS SOAD BECK MUSE FUEL

WHAM HOLE CARS PINK WHAM ENYA STYX INXS PINK HOLE

PINK INXS BLUR FUEL PINK PINK WHAM KORN SOAD INXS

BLUR STYX JAYZ MUSE KORN KORN BECK SADE STYX JAYZ

MUSE MUSE KISS KORN MUSE MUSE BLUR CARS WHAM KISS

BECK PINK KORN MOBY SOAD FUEL HOLE JAYZ BECK KORN

MOBY MOBY MOBY HOLE MOBY MOBY MOBY MOBY MOBY MOBY

HOLE WHAM MUSE TSOL HOLE HOLE MUSE SOAD HOLE MUSE

TSOL TSOL PINK JAYZ TSOL JAYZ TSOL MUSE TSOL PINK

JAYZ JAYZ RUSH SOAD JAYZ RUSH CARS KISS JAYZ RUSH

ENYA SOAD SADE SADE STYX SADE DIDO PINK ENYA SADE

SADE SADE SOAD STYX SADE WHAM ENYA STYX SADE SOAD

CARS KISS STYX INXS INXS SOAD JAYZ TSOL CARS STYX

DIDO KORN TSOL RUSH KISS STYX RUSH RUSH DIDO TSOL

RUSH RUSH WHAM KISS RUSH TSOL SADE WHAM RUSH WHAM

---- ---- ---- ---- ---- ---- ---- ---- ---- ----

0 1

(0) Original input

(1) Sorted

(2) Selection sort

(3) Insertion sort

(4) Shellsort
(13-4-1 increments)

(5) Mergesort
(top-down)

(6) Quicksort
(standard, no shuffle)

(7) Quicksort
(Dijkstra 3-way, no shuffle)

(8) Quicksort
(dual-pivot, no shuffle)

(9) Heapsort



4 PRINCETON UNIVERSITY

3. Analysis of algorithms. (6 points)

Suppose that you have an array of length 2N consisting of N B’s followed by N A’s.
Below is the array when N = 10.

B B B B B B B B B B A A A A A A A A A A

(a) How many compares does it take to insertion sort the array as a function of N?
Use tilde notation to simplify your answer.

(b) How many compares does it take to 3-way quicksort the array as a function of N (using
Dijsktra’s 3-way partitioning algorithm)? Use tilde notation to simplify your answer.



COS 226 MIDTERM, FALL 2012 5

4. 3-heaps. (8 points)

A 3-heap is an array representation of a complete ternary tree, where the key in each node is
greater than (or equal to) the keys in each of its children.

(a) Perform a delete-the-maximum operation on the following 3-heap, which is the level-order
traversal of a complete ternary tree, using 1-based indexing.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-- 88 33 77 66 10 30 25 23 60 75 14 21 50 9 7

Fill in the table below to show the resulting 3-heap, circling any entries that change.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

--

(b) Given the array index k of a key, what are the indices of its three (potential) children
as a function of k? Assume 1-based indexing and circle your three answers.

(c) What is the maximum number of compares for a delete-the-maximum operation as a
function of the number of keys N in the data structure? Circle the best answer.

∼ 1 ∼ log2N ∼ log3N ∼ 2 log3N ∼ 2 log2N ∼ 3 log3N ∼ N



6 PRINCETON UNIVERSITY

5. Red-black BSTs. (5 points)

Consider the following left-leaning red-black BST.

61

Midterm, Fall 2012

19

13

21

96

90

72

51

88

40

24 86

red link

Insert the key 99 into the red-black BST and give the level-order traversal of the resulting
BST. Circle the keys who parent link is red.



COS 226 MIDTERM, FALL 2012 7

6. Problem identification. (7 points)

You are applying for a job at a new software technology company. Your interviewer asks you
to identify the following tasks as either possible (with algorithms and data structures learned
in this course), impossible, or an open research problem. You may use each letter once, more
than once, or not at all.

−−−−− Given any array of N distinct integers, determine whether there
are three integers that sum to exactly zero in time proportional
to N1.5.

−−−−− Given any array of N distinct integers, determine whether there
are three integers that sum to exactly zero in time proportional
to N2.

−−−−− Implement a FIFO queue with a constant amount of memory
plus two LIFO stacks, so that each queue operation uses a con-
stant amortized number of stack operations.

−−−−− Given any left-leaning red-black BST containing N keys, find
the largest key less than or equal to a given key in logarithmic
time.

−−−−− Design a priority queue implementation that performs insert,
max, and delete-max in ∼ 1

3 lgN compares per operation, where
N is the number of comparable keys in the data structure.

−−−−− Given any array of N keys containing three distinct values, sort
it in time proportional to N and using only a constant amount
of extra space.

−−−−− Design a practical, in-place, stable, sorting algorithm that guar-
antees to sort any array of N comparable keys in at most
∼ N lgN compares.

I. Impossible

P. Possible

O. Open



8 PRINCETON UNIVERSITY

7. LRU cache. (8 points)

An LRU cache is a data structures that stores up to N distinct keys. If the data structure is
full when a key not already in the cache is added, the LRU cache first removes the key that
was least recently cached.

Design a data structure that supports the following API:

94

LRU cache API

public class LRU<Key, Value>public class LRU<Key, Value>public class LRU<Key, Value>

LRU(int N) create an empty LRU cache with capacity N

void put(Key key, Value val)

if there are N key-value pairs in the cache, remove the 
key (and corresponding value) that was least recently 
used as an argument to put;
insert the given key-value pair into the LRU cache.

Key get(Key key)
return the value associated with the given key;
return null if there is no such key-value pair

public class LRU<Key>public class LRU<Key>public class LRU<Key>

LRU(int N) create an empty LRU cache with capacity N

void cache(Key key)

if there are N keys in the cache and the given key is 
not already in the cache, (i) remove the key that 
was least recently used as an argument to cache()
and (ii) add the given key to the LRU cache

boolean inCache(Key key) is the key in the LRU cache?

The operations cache() and inCache() should take constant time on average under the
uniform hashing assumption.

For example,

LRU<String> lru = new LRU<String>(5);

// LRU cache (in order of when last cached)

lru.cache("A"); // A (add A to front)

lru.cache("B"); // B A (add B to front)

lru.cache("C"); // C B A (add C to front)

lru.cache("D"); // D C B A (add D to front)

lru.cache("E"); // E D C B A (add E to front)

lru.cache("F"); // F E D C B (remove A from back; add F to front)

boolean b1 = lru.inCache("C"); // F E D C B (true)

boolean b2 = lru.inCache("A"); // F E D C B (false)

lru.cache("D"); // D F E C B (move D to front)

lru.cache("C"); // C D F E B (move C to front)

lru.cache("G"); // G C D F E (remove B from back; add G to front)

lru.cache("H"); // H G C D F (remove E from back; add H to front)

boolean b3 = lru.inCache("D"); // H G C D F (true)



COS 226 MIDTERM, FALL 2012 9

Give a crisp and concise English description of your data structure and how the inCache()

and cache() operation are implemented. Your answer will be graded on correctness, effi-
ciency, and clarity.

• Describe your data structure(s). For example, if you use a linear probing hash table,
specify what are the hash table key-value pairs. Also, show (with a small diagram) your
data structure(s) immediately after the sequence of operations on the previous page.

• inCache(Key key):

• cache(Key key):



10 PRINCETON UNIVERSITY

8. Detecting a duplicate. (8 points)

Given k sorted arrays containing N keys in total, design an algorithm that determine whether
there is any key that appears more than once.

Your algorithm should use extra space at most proportional to k. For full credit, it should run
in time at most proportional to N log k in the worst case; for partial credit, time proportional
to Nk.

(a) Give a crisp and concise English description of your algorithm.
Your answer will be graded on correctness, efficiency, and clarity.

(b) What is the order of growth of the worst case running time of your algorithm as a
function of N and k? Briefly justify your answer.

N k logN N log k N logN Nk Nk log k Nk logN N2


