
COS 226 Algorithms and Data Structures Fall 2015

Final Exam

You have 180 minutes for this exam. The exam is closed book, except that you are allowed to use one
page of notes (8.5-by-11, one side, in your own handwriting). No calculators or other electronic devices are
permitted. Give your answers and show your work in the space provided. You may use the back of each
page for scratch space, or to continue long answers.

Name:

NetID:

Precept:

P01 9:00 Andy Guna
P02 10:00 Andy Guna
P02A 10:00 Elena Sizikova
P03 11:00 Maia Ginsburg
P03A 11:00 Nora Coler
P04 12:30 Maia Ginsburg
P04A 12:30 Miles Carlsten
P05 1:30 Tom Wu

Write and sign: “I pledge my honor that I have not violated the Honor Code during this examination.”

Grading note: To ensure that guessing on true/false and multiple-choice questions does not affect your
expected score, grading on these questions will be as follows:

True / False: +1 point if correct, −1 point if incorrect, 0 points if left unanswered.
Multiple choice: +2 points if correct, −0.4 points if incorrect, 0 points if left unanswered.

Problem Score Problem Score
0 7
1 8
2 9
3 10
4 11
5 12
6 13

Sub 1 Sub 2

Total:



COS 226, Fall 2015 Page 2 of 15

0. Init. (1 point)

In the space provided on the front of the exam, write your name, Princeton netID, and precept number, and
write and sign the honor code.

1. Flow. (10 points)

Consider the following flow network and feasible flow f from the source vertex S to the sink vertex T.

(a) What is the value of the flow f ? Circle the correct answer.

3 5 7 11 13 17

(b) Starting from the flow given above, perform one iteration of the Ford-Fulkerson algorithm. List the
sequence of vertices on the augmenting path, in order from S to T.

(c) What is the value of the maximum flow? Circle the correct answer.

3 5 7 11 13 17

(d) Circle all vertices on the sink (T) side of the minimum cut.

S A B C D E F T



COS 226, Fall 2015 Page 3 of 15

2. SPT. (12 points)

Simulate Dijkstra’s algorithm on the edge-weighted digraph below, starting from vertex 0.

0 1

2 3

4 5

24

1

20

10

10

5

830

(a) Fill in the following table:

distTo[] edgeTo[]

0

1

2

3

4

5

(b) What is the maximum number of items in the priority queue? Circle the correct answer.

1 2 3 4 5 6

(c) What is the last vertex popped from the priority queue? Circle the correct answer.

0 1 2 3 4 5

(d) What letter is spelled out by the edges of the shortest-paths tree (SPT) computed by Dijkstra’s algorithm?



COS 226, Fall 2015 Page 4 of 15

3. TST. (13 points)

Consider the following Ternary Search Trie (TST), where the values are shown next to the nodes of the
corresponding string keys.

(a) We would like to construct the above TST by inserting six strings into an empty TST. Circle the sequences
below that can produce the above TST. There may be multiple correct answers.

Sequence 1: ATT ACG T CT AGC GA

Sequence 2: ATT T CT ACG GA AGC

Sequence 3: ATT T GA ACG CT AGC

Sequence 4: ATT T AGC ACG CT GA

Sequence 5: ATT ACG AGC T CT GA

Sequence 6: ATT T AGC GA ACG CT

Sequence 7: ATT ACG T CT GA AGC

(b) Insert the three strings CA, AGA, and GAC into the TST with the associated values 0, 18, and 29, respec-
tively. Update the figure above to reflect the changes.



COS 226, Fall 2015 Page 5 of 15

4. KMP DFA. (13 points)

(a) Below is a partially-completed Knuth-Morris-Pratt DFA for a string s of length 6 over the alphabet
{A,B}. State 6 is the accept state. Fill in all the missing spots in the table.

j 0 1 2 3 4 5

pat.charAt(j)

A 1 1

B 3 3

(b) Given the following KMP DFA:

j 0 1 2 3 4 5 6

A 1 1 3 1 5 1 5

B 0 2 0 4 0 6 7

List the string that this DFA searches for.

(c) Given each of the following strings as input, what state would the DFA in (b) end in? Circle the correct
answer for each string.

BABBAA: 0 1 2 3 4 5 6 accept

ABABABA: 0 1 2 3 4 5 6 accept

BABABABA: 0 1 2 3 4 5 6 accept

BBAABBABAB: 0 1 2 3 4 5 6 accept



COS 226, Fall 2015 Page 6 of 15

5. DAG. (10 points)

Consider the following directed graph.

(a) You wish to find the shortest common ancestor (SCA) of the two given sets, using BFS. List the first
six vertices added to the queue by running BreadthFirstDirectedPaths.java on an iterator with the
sources from set A = {13,23,24}?

(b) How many vertices in all will BreadthFirstDirectedPaths.java visit when passed an iterator with
the sources from set B = {6,16,17}?

(c) Using BFS to find the SCA can take running time proportional to V +E. Suppose you wished to use
DFS instead. What would be the order-of-growth running time? Circle the correct answer.

constant V +E E logV V logE (V +E)2 exponential

(d) True or false: any pair of vertices in a rooted directed acyclic graph (DAG) has at least one shortest
common ancestor.

True False

(e) True or false: any pair of vertices in any DAG for which a topological sort exists has at least one shortest
common ancestor.

True False



COS 226, Fall 2015 Page 7 of 15

6. Regex. (11 points)

(a) Consider the regular expression

((A|B)DA*C)

Circle all words matched by this regular expression.

ABDAC ADAAC ABDACA BDC BDAC AACA

(b) The following NFA matches the regular expression in (a):

Which of the labeled edges correspond to ε transitions (as opposed to match transitions)? Circle the num-
bers of only the ε transitions:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

(c) Which of the following (if any) are true reasons why we usually prefer NFAs for matching a regular
expression (RE), as opposed to DFAs? Circle the correct answer in each case.

The size of the NFA is linear in the size of the RE, while the size of the DFA might be as bad as quadratic.

True False

The size of the NFA is linear in the size of the RE, while the size of the DFA might be as bad as exponential.

True False

The running time to simulate the NFA is linear in the size of the RE, while the running time for the DFA
might be as bad as quadratic.

True False

The running time to simulate the NFA is linear in the size of the RE, while the running time for the DFA
might be as bad as exponential.

True False

The NFA only has two kinds of transitions (match and ε), while the DFA requires determining the correct
transition for each possible input character.

True False

The DFA might require backing up in the input stream, while the NFA does not.

True False



COS 226, Fall 2015 Page 8 of 15

7. Huffman. (10 points)

Consider the following Huffman tree:

(a) Decode the following 24-bit bitstring: 111000110001100001011000

(b) What is the compression ratio (compressed size / uncompressed size) for the above bitstring? Assume
that characters were represented by 8 bits before compression.

(c) What is the best compression ratio achievable on any string using this Huffman tree?

(d) Suppose you added another character, H, with a count of 1. After re-creating the new Huffman code,
circle all the letters that acquire a different codeword.

A B C D E F G

(e) Using the Huffman code from (d), what is the worst compression ratio achievable on any string?



COS 226, Fall 2015 Page 9 of 15

8. Graph T/F. (10 points)

(a) The adjacency matrix representation is usually preferred over adjacency lists, especially for storing sparse
graphs compactly.

True False

(b) Given the data structures produced by depth-first search (DFS), one can check whether a given vertex is
connected to the source in constant time.

True False

(c) Breadth-first search (BFS) will visit every vertex in a directed graph, in nondecreasing order from the
source.

True False

(d) BFS and DFS are interchangeable and equally practical for all applications of graph search.

True False

(e) Kruskal’s algorithm computes the minimum spanning tree (MST) in time proportional to E logE (in the
worst case).

True False

(f) Given any directed graph, there is always a shortest-paths tree (SPT) containing every vertex reachable
from a source vertex s.

True False

(g) Dijkstra’s algorithm can find shortest paths in a directed graph with negative weights, but no negative
cycles.

True False

(h) An st-cut in a graph is any partition of vertices into two disjoint sets, such that vertices s and t wind up
in different sets.

True False

(i) A graph flow is a max flow if and only if there exists no cut with the same capacity as the flow’s value.

True False

(j) The choice of which augmenting paths to consider first in the Ford-Fulkerson algorithm doesn’t impact
the number of paths that need to be considered.

True False



COS 226, Fall 2015 Page 10 of 15

9. Sort. (14 points)

The column on the left is an array of strings to be sorted. The column on the right is in sorted order. The
other columns are the contents of the array at some intermediate step during one of the algorithms below.
Write the number of each algorithm under the corresponding column. You may use each number more than
once.

mink bear bear calf crow myna crab bear bear

moth calf calf lamb lamb crab toad crow calf

crow crow crow hare deer lamb swan calf crab

myna crab crab wasp crab toad bear crab crow

swan deer hare hawk hare mule deer deer deer

wolf hare kiwi ibex bear hare ibex hare hare

mule hawk deer bear kiwi sole hoki hawk hawk

slug hoki hawk deer calf wolf mule hoki hoki

hare ibex ibex mink hawk calf sole ibex ibex

bear kiwi hoki lion ibex slug wolf kiwi kiwi

kiwi lion lion kiwi hoki moth calf lion lamb

calf lynx lynx slug lion kiwi lamb lynx lion

hawk lamb lamb toad lynx hoki myna lamb lynx

ibex mink mink hoki mink mink mink mink mink

oryx moth mule sole mule hawk lynx moth moth

lion myna myna wolf myna swan lion myna mule

sole mule moth moth moth lion crow mule myna

wasp oryx wasp crab wasp wasp hare oryx oryx

lynx swan sole crow sole bear wasp swan slug

hoki slug oryx oryx oryx deer moth slug sole

crab sole slug mule slug crow slug sole swan

deer toad wolf swan wolf ibex kiwi toad toad

lamb wolf toad myna toad oryx hawk wolf wasp

toad wasp swan lynx swan lynx oryx wasp wolf

---- ---- ---- ---- ---- ---- ---- ---- ----

0 4

(0) Original input (2) LSD radix sort (4) Sorted
(1) 3-way radix quicksort (3) MSD radix sort

(no shuffle)



COS 226, Fall 2015 Page 11 of 15

10. G2. (10 points)

The square of a digraph G consisting of vertices V and edges E is a digraph G2 such that:

• the vertices in G2 are the same as the vertices in G, and

• two vertices in G2 are connected by an edge (u,v) if and only if G contains edges (u,w) and (w,v),
for some vertex w.

That is, vertices u and v are connected by an edge in G2 whenever G contains a path with exactly two edges
from u to v.

Describe an algorithm for computing the square of a digraph (represented using adjacency lists). For full
credit, your solution should run in O(V E) time. To simplify the problem, you need not remove duplicates
from the adjacency lists in G2.



COS 226, Fall 2015 Page 12 of 15

11. ST Analysis. (10 points)

You are deciding between symbol table implementations to store L-character strings, consisting of characters
from the extended-ASCII (R = 256) character set. Analyze the worst-case order-of-growth running time
required by the get() operation (with the key present in the symbol table — i.e., a search hit) for the
following implementations, assuming that N strings are already in the symbol table. Circle the correct
answer in each case.

(a) A Left-Leaning Red-Black BST of strings.

Worst-case number of character comparisons:

lgN lg2 N L+ lg2 N L lgN (lgN)(logR L) NL

(b) An M-entry hash table with separate chaining. Assume the hash table has been resized such that the
average chain length N/M is bounded: 2≤ N/M ≤ 8. Do not include the time to compute the hashCode.

Worst-case number of character comparisons:

M+L NL/M ML/N (N/M) logR L (logR L)

(
1+

1
1−N/M

)
NL

(c) An M-entry hash table with linear probing. Assume the hash table has been resized such that the average
occupancy N/M is bounded: 1/8≤ N/M ≤ 1/2. Do not include the time to compute the hashCode.

Worst-case number of character comparisons:

M+L NL/M ML/N (N/M) logR L (logR L)

(
1+

1
1−N/M

)
NL

(d) An R-way trie.

Worst-case number of array accesses:

R L R+L RL logR N L+ logR N

(e) A ternary search trie (TST).

Worst-case number of character comparisons:

R L R+L RL logR N L+ logR N



COS 226, Fall 2015 Page 13 of 15

12. Reduction. (10 points)

(a) The FIND-42NDproblem is to find the 42nd smallest item in an (initially unsorted) array. You can imple-
ment this easily by sorting the array in O(N logN) time and returning the item in the 42nd position. Given
this, which of the following (if any) must be true? Circle the correct answer in each case.

FIND-42ND reduces to sorting.

True False

Sorting reduces to FIND-42ND.

True False

O(N logN) is a lower bound on FIND-42ND.

True False

O(N logN) is an upper bound on FIND-42ND.

True False

FIND-42ND must be NP-complete.

True False

FIND-42ND cannot be NP-complete unless P = NP.

True False

(b) Of course, it is also easy to implement FIND-42ND in O(N) time, using O(42) additional space. Further-
more, it is possible to show that linear time is the lower bound on FIND-42ND, since all elements must be
examined. Given this algorithm and the reduction in (a), which of the following (if any) must be true:

O(N) is a lower bound on sorting.

True False

O(N) is an upper bound on sorting.

True False

Sorting is strictly harder than FIND-42ND, so can never be accomplished in O(N) time.

True False

New developments in sorting might result in an asymptotically faster algorithm for FIND-42ND.

True False



COS 226, Fall 2015 Page 14 of 15

13. MST. (16 points)

You are given an edge-weighted undirected graph, using the adjacency list representation, together with the
list of edges in its minimum spanning tree (MST). Describe an efficient algorithm for updating the MST,
when each of the following operations is performed on the graph. Assume that common graph operations
(e.g., DFS, BFS, finding a cycle, etc.) are available to you, and don’t describe how to re-implement them.

(a) Update the MST when the weight of an edge that was not part of the MST is decreased.
Give the order-of-growth running time of your algorithm as a function of V and/or E.

(b) Update the MST when the weight of an edge that was part of the MST is decreased.
Give the order-of-growth running time of your algorithm as a function of V and/or E.



COS 226, Fall 2015 Page 15 of 15

(c) Update the MST when the weight of an edge that was not part of the MST is increased.
Give the order-of-growth running time of your algorithm as a function of V and/or E.

(d) Update the MST when the weight of an edge that was part of the MST is increased.
Give the order-of-growth running time of your algorithm as a function of V and/or E.


