
COS126 Symbol Table Exercises 4.4

(answers on reverse side)

• For each of the applications of symbol tables listed in the top group, if we want to
store it in a variable that is a parameterization of the generic ST (symbol table) type,
find a parameterization in the bottom group that will do the job.

1. For each calendar year since 1748, the number of students who graduated from
Princeton in that year

2. Dictionary of all synonyms of all English words

3. Count frequency of words in a book

4. Store a list of people living at every postal address and track the age of each
person there

5. Track which way each voting senator voted (yes or no) on a motion

6. Look up the state containing any given zip code∗

7. Symbol table of all local variables names and values in a virtual machine

∗: pretend zip codes are integers, although this is not done in practice because of
leading zeroes and ZIP+4.

a. ST<String, Integer>

b. ST<String, Boolean>

c. ST<Integer, String>

d. ST<Integer, Integer>

e. ST<String, String[]>

f. ST<String, ST<String, Integer>>

g. ST<String, Object>

• Can a ST<Integer, Double> be used to do anything that a double[] can do? Is the
reverse true? Are there tradeoffs?

1



Answers:

• 1d

2e

3a

4f

5b

6c

7g (Object is the general Java superclass, which can refer to any non-primitive. Java
itself doesn’t truly use symbol tables in this way, but other “interpreted” languages
do. We won’t use Object in this course.)

• Anything that a double[] can do, can also be done by a ST<Integer, Double>. For
example, we’d use st.put(i, 867.5309) to simulate stringArray[i] = 867.5309.
There are things that the symbol table can do which the array cannot: skip indices,
use negative indices, and change the number of elements after creation.

When the indices are integers choosing a data structure will depend on the application.
A symbol table can save space when the indices used are sparse. Although lookup is
constant time for arrays, logarithmic time for symbol tables is virtually equivalent.

2


