COS 426 : Precept 5
Working with Half-Edge
Agenda

• How to tackle implementation of more advanced features

• Specific discussion

 • Truncate

 • Extrude

 • Triangle Subdivision

 • Bevel(?)

 • Quad Subdivision(?)
How do I start?

• Some of the operations are tricky to implement!

• Think locally - independence of operations
 • Modifying a vertex/edge/face should not influence other primitives

• Start small
 • Just work on one primitive at a time

• Decouple topology and geometry
 • What are necessary topological changes?
 • What are necessary geometrical changes?
 • Apply geometrical change after topological
Caution is advised

• Need to think ahead
 • What data might change?
 • Do you need to store it beforehand?

• Pen and paper!
 • Draw things out, make sure you understand what is happening

• Count!
 • After applying your operation how many new vertices you expect to see?
Truncate

- Corners of the shape are cutoff
- Main primitive
 - Vertex
 - How many new vertices?
 - +2 per vertex
 - How many new faces?
 - +1 per vertex
Truncate - topology

- Start locally - just consider single vertex
- Need to add two new vertices, and a single new face

Start

2 x SplitEdge

Split Face
Truncate - topology

- Start locally - just consider single vertex
- Need to add two new vertices, and a single new face

Those were only topological changes! New blue vertices should be simply put at the location of the green one!
Truncate - geometry

- We need to move vertices along halfedges
 - You may want to store the respective offset vectors per vertex before hand
 - As you modify one vertex lengths of edges will change!
Extrude

- Each face is moved along its normal, with new faces stitched to original face position

- Main primitive
 - Face

- How many new vertices?
 - $+n$ per n-gon

- How many new faces?
 - $+n$ per n-gon
Extrude - topology

- Again, following figures are for illustration only, new vertices should be added at a location of the old ones!
Extrude - topology

- Extrude is bit harder - you need to perform adding new geometry and relinking manually.

- Desired:
Extrude - topology

• Let’s change notation a bit, introduce old and new vertices

\[\text{nv}_i = \text{addVertex}(\text{ov}_i.\text{position}); \]
Extrude - topology

nf_i = addFace();
Extrude - topology

\[\text{nf}_0 \]

\[\text{ov}_0 \]

\[\text{nv}_0 \]

\[\text{nv}_3 \]

\[\text{ov}_3 \]

\[\text{f} \]
Extrude - topology

\(\text{he}_0 = \text{old}_\text{halfedges}[0]; \)
Extrude - topology

Should be stored beforehand, such that `old_halfedges[0]` points at `ov_0`.

```
he_0 = old_halfedges[0];
```
Extrude - topology

Should be stored beforehand, such that `old_halfedges[0]` points at `ov0`

```
he0 = old_halfedges[0];
```
Extrude - topology

\[\text{he}_0 = \text{old}_\text{halfedges}[0]; \]

Add half edges in counter clockwise order

Should be stored beforehand, such that \(\text{old}_\text{halfedges}[0] \) points at \(\text{ov}_0 \)
Extrude - topology

he₀ = old_halfedges[0];
Add half edges in counter clockwise order

Should be stored before hand, such that old_halfedges[0] points at ov₀
Extrude - topology

Should be stored beforehand, such that old_halfedges[0] points at ov₀.

\[h₀ = \text{old_halfedges}[0]; \]

Add half edges in counter clockwise order.
Extrude - topology

Should be stored beforehand, such that `old_halfedges[0]` points at `ov_0`

```cpp
he_0 = old_halfedges[0];
```

Add half edges in counter clockwise order

```
```
Extrude - topology

Should be stored beforehand, such that `old_halfedges[0]` points at `ov_0`.

- `he_0 = old_halfedges[0];`
- Add half edges in counter-clockwise order.
- Add half edge opposite to `he_2`.
Extrude - topology

he_0 = old_halfedges[0];
Add half edges in counter clockwise order
Add half edge opposite to he_2

Should be stored beforehand such that old_halfedges[0] points at ov_0

\[
\begin{align*}
\text{nf}_0 & \quad \text{he}_1 \\
\text{he}_2 & \quad \text{he}_3 \\
\text{he}_5 & \quad \text{f} \\
\text{nv}_0 & \quad \text{nv}_3
\end{align*}
\]
Extrude - topology

Should be stored before hand, such that old_halfedges[0] points at ov0

he0 = old_halfedges[0];
Add half edges in counter clockwise order
Add half edge opposite to he2
Relink next
Extrude - topology

he_0 = old_halfedges[0];
Add half edges in counter clockwise order
Add half edge opposite to he_2
Relink next

Should be stored before hand, such that old_halfedges[0] points at ov_0
Extrude - topology

Should be stored beforehand, such that old_halfedges[0] points at ov0

he0 = old_halfedges[0];
Add half edges in counter clockwise order
Add half edge opposite to he2
Relink next
Extrude - topology

\[\text{he}_0 = \text{old}_\text{halfedges}[0] \]

Add half edges in counter clockwise order

Add half edge opposite to \(\text{he}_2 \)

Relink next

Should be stored beforehand, such that \(\text{old}_\text{halfedges}[0] \) points at \(\text{ov}_0 \)
Extrude - topology

Should be stored beforehand, such that `old_halfedges[0]` points at `ov_0`.

\[\text{he}_0 = \text{old}_\text{halfedges}[0] ; \]

Add half edges in counter clockwise order.

Add half edge opposite to `he_2`.

Relink next.
Extrude - topology

he_0 = old_halfedges[0];
Add half edges in counter clockwise order
Add half edge opposite to he_2
Relink next
Relink opposite

Should be stored before hand, such that old_halfedges[0] points at ov_0
Extrude - topology

he_0 = old_halfedges[0];
Add half edges in counter clockwise order
Add half edge opposite to he_2
Relink next
Relink opposite

Should be stored beforehand, such that old_halfedges[0] points at ov_0
Extrude - topology

he₀ = old_halfedges[0];
Add half edges in counter clockwise order
Add half edge opposite to he₂
Relink next
Relink opposite
Relink faces

Should be stored before hand, such that old_halfedges[0] points at ov₀
Extrude - topology

```
he_0 = old_halfedges[0];
```

Add half edges in counter clockwise order

Add half edge opposite to he_2

Relink next

Relink opposite

Relink faces

Should be stored beforehand, such that old_halfedges[0] points at ov_0
Extrude - topology

he_0 = old_halfedges[0];
Add half edges in counter clockwise order
Add half edge opposite to he_2
Relink next
Relink opposite
Relink faces

Should be stored beforehand, such that old_halfedges[0] points at ov_0

\[\begin{align*}
&\text{n}_v_3 & \text{he}_5 & \text{n}_v_0 \\
&\text{he}_3 & \text{nf}_0 & \text{he}_2 \\
&\text{he}_0 & \text{he}_1 & \text{he}_0
\end{align*}\]
Extrude - topology

- Should be stored beforehand, such that old_halfedges[0] points at ov_0
- $he_0 = old_halfedges[0]$;
- Add half edges in counter clockwise order
- Add half edge opposite to he_2
- Relink next
- Relink opposite
- Relink faces
Extrude - topology

Should be stored beforehand, such that old_halfedges[0] points at ov0

he0 = old_halfedges[0];
Add half edges in counter-clockwise order
Add half edge opposite to he2
Relink next
Relink opposite
Relink faces

fv
Extrude - topology

Should be stored beforehand, such that `old_halfedges[0]` points at `ov_0`.

\[
\begin{aligned}
he_0 &= old_halfedges[0]; \\
\text{Add half edges in counter clockwise order} \\
\text{Add half edge opposite to } he_2 \\
\text{Relink next} \\
\text{Relink opposite} \\
\text{Relink faces}
\end{aligned}
\]
Extrude - topology

Should be stored beforehand, such that `old_halfedges[0]` points at `ov_0`

```
he_0 = old_halfedges[0];
Add half edges in counter clockwise order
Add half edge opposite to `he_2`
Relink next
Relink opposite
Relink faces
```
Extrude - topology

Missing next links around face. Missing opposite link on edges.
Extrude - topology

Missing next links around face. Missing opposite link on edges.

Store references in separate arrays
Extrude - topology

Missing next links around face. Missing opposite link on edges.

Store references in separate arrays

Relink
Extrude - topology

Missing next links around face. Missing opposite link on edges.

Store references in separate arrays

Relink
Extrude - topology

Missing next links around face. Missing opposite link on edges.

Store references in separate arrays

Relink
Extrude - geometry

- Actually, very simple

- Move each \(n_v_i \) by factor * \(f.normal \)
Extrude - geometry

- Actually, very simple

- Move each \(\text{nv}_i \) by factor * \(\text{f.normal} \)
Triangle Subdivision

• Each face becomes 4 faces, by splitting all edges in half

• Assumes all triangles!
 • Call your Filters.triangulate();

• Main primitive
 • Face

• How many new vertices?
 • +1 per edge

• How many new faces?
 • +3 per face
TriSub - topology

- Need to split all edges!
- Create list of half edges
 - Half of them, when splitting halfedge, opposite will also be split
- Join new vertices around a face
 - Determine whether a vertex is old or new by index in vertices array
 - All new will be added to the end of the array!
TriSub - topology

- SplitEdge for each half edge in pre-computed list
- SplitFace per each face, joining new vertices
TriSub - geometry

• None - we’re done!

• For Loop - store array of new positions for each vertex, where you will write positions calculated according to weight rules

• After done with topology, update positions!

\[
\beta = \begin{cases}
\frac{3}{8n} & n > 3 \\
\frac{3}{16} & n = 3
\end{cases}
\]
Optional features

- Bevel
- Quad Subdivision
- We will just gloss over those
Bevel

- Let’s think about required topology.

Each vertex becomes a face

Each edge becomes a face
Bevel topology

Start with truncate

Cut a triangle

Relink original edge
Bevel - topology

- Select half edges that join truncated points
- Caution when selecting half-edges to perform split
 - Make sure you’re not double counting
- Moving an edge requires manual relinking
Bevel - geometry

- All new vertices are at location of the respective original vertex
- Can move them towards the centroid of the main face
Quad Subdivision

• n-gon to quad split
 • Split each edge (SplitEdge)
 • Join 2 new vertices (SplitFace)
 • Split newly create edge (SplitEdge)
 • Join rest of new vertices (SplitFace)
 • Move to interior vertex to centroid location
Quad Subdivision

Start
SplitEdge
SplitFace
SplitEdge
SplitFace
Move
Quad Subdivision

- Three classes
 - Old vertices
 - Midpoints
 - Centroids

Scott Schaefer