Chapter 9

Basic Signal Processing

M otivation

Many aspects of computer graphics and computer imagery differ from aspects of
conventional graphicsand imagery because computer representationsare digital and
discrete, whereas natural representations are continuous. In a previous lecture we
discussed the implications of quantizing continuous or high precision intensity val-
uesto discrete or lower precision values. In this sequence of lectureswe discussthe
implications of sampling a continuous image at a discrete set of locations (usually
aregular lattice). The implications of the sampling process are quite subtle, and to
understand them fully requires a basic understanding of signal processing. These
notes are meant to serve as a concise summary of signal processing for computer

graphics.

Reconstr uction

Recall that aframebuffer holdsa 2D array of numbers representing intensities. The
display creates a continuous light image from these discrete digital values. We say
that the discrete image is reconstructed to form a continuous image.

Although it is often convenient to think of each 2D pixel as alittle square that
abuts its neighbors to fill the image plane, this view of reconstruction is not very
general. Instead it is better to think of each pixel as a point sample. Imagine an
image as a surface whose height at a point is equal to the intensity of the image at
that point. A single sampleisthen a“spike;” the spike islocated at the position of
the sample and its height is equal to the intensity associated with that sample. The
discreteimageisaset of spikes, and the continuousimageisasmooth surfacefitting
the spikes as shown in Figure 9.1. One obvious method of forming the continuous
surface isto inter pol ate between the samples.
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Figure 9.1: A continuousimage reconstructed from a discrete image represented as
aset of samples. Inthisfigure, theimageisdrawn asa surface whose height is equal
to the intensity.

Sampling

We can make adigital imagefrom an analog image by taking samples. Most smply,
each sample records the value of the image intensity at a point.

Consider a CCD camera. A CCD camerarecords image values by turning light
energy into electrical energy. The light sensitive area consist of an array of small
cells; each cell produces a single value, and hence, samples the image. Notice that
each sampleisthe result of all the light falling on a single cell, and corresponds to
an integral of al the light within a small solid angle (see Figure 9.2). Your eyeis
similar, each sampleresultsfrom the action of asingle photoreceptor. However, just
like CCD cells, photoreceptor cells are packed together in your retina and integrate
over asmall area. Although it may seem like the fact that an individual cell of a
CCD camera, or of your retina, sasmples over an areaislessthan ideal, the fact that
intensities are averaged in this way will turn out to be an important feature of the
sampling process.

A vidicon camera samples an image in dlightly different way than your eye or
a CCD camera. Recall that television signal is produced by araster scan processin
which the beams moves continuously from left to right, but discretely from top to
bottom. Therefore, intelevision, theimageis continuousin the horizontal direction.
and sampled in the vertical direction.

Theabovediscussion of reconstructionand sampling leadsto an interesting ques-
tion: Isit possibleto sample animage and then reconstruct it without any distortion?

Jaggies, Aliasing

Similarly, we can create digital images directly from geometric representations such
aslinesand polygons. For example, we can convert apolygon to samples by testing
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Figure9.2: A CCD camera. Each cell of the CCD array receives light from asmall
solid angle of thefield of view of the camera. Thus, when asampleistaken the light
isaveraged over asmall area.

whether a point is inside the polygon. Other rendering methods also involve sam-
pling: for example, in ray tracing, samples are generated by casting light rays into
the 3D scene.

However, the sampling processisnot perfect. Themost obviousproblemisillus-
trated when a polygon or checkerboard is sampled and displayed as shown in Fig-
ure 9.3. Notice that the edge of a polygon is not perfectly straight, but instead is
approximated by a staircased pattern of pixels. The resulting image has jaggies.

Another interesting experiment isto sample azone plate as shownin Figure 9.4.
Zone plates are commonly used in optics. They consist of a series of concentric
rings; asthe rings move outward radially from their center, they become thinner and
more closely spaced. Mathematically, we can describe the ideal image of a zone
plate by the smple formula: sin r? = sin (2* + y*). If we sample the zone plate
(to sample an image given by aformula f(z,y) at apoint is very easy; we smply
plug in the coordinates of the point into the function f), rather than see a single set
of concentric rings, we see several superimposed sets of rings. These superimposed
sets of rings beat against one another to form a striking Moire pattern.

These examples lead to some more questions. What causes annoying artifacts
such as jaggies and moire patterns? How can they be prevented?

Digital Signal Processing

The theory of signal processing answers the questions posed above. In particular, it
describes how to sample and reconstruct images in the best possible ways and how
to avoid artifacts dues to sampling.
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Figure 9.3: A ray traced image of a3D scene. Theimageisshown at full resolution
on the left and magnified on the right. Note the jagged edges along the edges of the
checkered pattern.

Signal processingisvery useful tool in computer graphicsand image processing.
There are many other applications of signal processing ideas, for example:

1. Images can be filtered to improve their appearance. Sometimes an image has
been blurred while it was acquired (for example, if the camera was moving)
and it can be sharpened to look less blurry.

2. Multiple signals (or images) can be cleverly combined into a single signal,
so that the different components can later be extracted from the single signal.
Thisisimportant in television, where different color images are combined to
form asingle signal which is broadcast.

Frequency Domain vs. Spatial Domain

The key to understanding signal processing is to learn to think in the frequency do-
main.

Let’sbeginwithamathematical fact: Any periodicfunction (except variousmon-
strositiesthat will not concern us) can always be written asa sum of sineand cosine
waves.



Figure 9.4: Sampling the equation sin (2% + y*). Rather than a single set of rings
centered at the origin, notice there are several sets of superimposed rings beating
against each other to form a pronounced Moire pattern.
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A periodic function is afunction defined in aninterval 7' that repeats itself out-
side the interval. The sine function—sin x—is perhaps the smplest periodic func-
tion and hasan interval equal to 2. It iseasy to seethat the sinefunctionisperiodic
sincesin(z + 27) = sin z. Sines can have other frequencies, for example, the sine
function sin 27 fx repeats itself f timesin the interval from 0 to 2#. f isthe fre-
guency of the sine function and is measured in cycles per second or Hertz.

If we could represent a periodic function with asum of sinewaves each of whose
periods were harmonics of the period of the original function, then the resulting sum
will also be periodic (since all the sines are periodic). The above mathematical fact
saysthat such a sum can always be found. The reason we can represent all periodic
functions is that we are free to choose the coefficients of each sine of a different
frequency, and that we can use an infinite number of higher and higher frequency
sine waves.

Asanexample, consider arather nasty function—asquare pulse. Thisfunctionis
nasty becauseit isdiscontinuousin value and derivative at the beginning and ending
points of the pulse. A square pulseisthelimitasn — oo of

1 22 cos(2k — 1wz
Sn — - - _1 k-1
(0) = 3+3 ,;( ) 2% — 1
= 1+ 2( 3wz + Swr + ...
= 5+ —(coswa 3Cos W 5Cos wr + ...

Where the angular frequency (in radians) w = 2= f. A plot of thisformulafor four
different values of » is shown in Figure 9.5. Notice that as »n increases, the sum of
sines more closely approximates the ideal square pulse.

More generally, anon-periodic function can also be represented asasum of sin’s
and cos's, but now wemust use all frequencies, not just multiplesof theperiod. This
means the sum isreplaced by an integral.

1 poo .
flz) = 5/_00 F(w)e™dw

where €% = coswz + isinwz (i = v/—1). F/(w) are the coefficients of each sine
and cosine; F'(w) is called the spectrum of the function f(z).
The spectrum can be computed from a signal using the Fourier transform.

o0

F(w) :/ f(z)e ™ dz

— 00

Unfortunately, we do not have timeto derive these formulas; the reader will haveto
accept themastrue. For thoseinterestedintheir derivation, werefer youto Bracewell.
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Figure 9.5: Four approximationsto a square pulse. Notice that each approximation
involves higher frequency terms and the resulting sum more closely approximates
the pulse. Asmore and more high frequencies are added, the sum converges exactly
to the square pulse. Note also the oscillation at the edge of the pulse; thisis often
referred to as the Gibbs phenomena.
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To illustrate the mathematics of the Fourier transform, let us calculate the Fourier
transform of a square pulse. A square pulse is described mathematically as

I |z <
square(x) = 0 |2|>

DO [ |

The Fourier transform of this function is straightforward to compute.

/ square(z) e " dx = / e dg

SW

= sincf

Here we introduce the sinc function defined to be

Sin Tx

sincx —
m™r
Notethat sin 7« equalszerofor al integer valuesof x, except = equalszero. At zero,
the situation ismore complicated: both the numerator and the denominator are zero.
However, careful analysis showsthat sinc 0 = 1.

Thus,
) 1 n=0
sinc(n) = { 0 n£0

A plot of the sinc function is shown below. Notice that the amplitude of the oscilla-
tion decreases as * moves from the origin.
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It isimportant to build up your intuition about functions and their spectra. Fig-
ure 9.6 shows some example functions and their Fourier transforms.

The Fourier transform of cos wz istwo spikes, one at —w and the other at +w.
This should beintuitively true because the Fourier transform of afunctionis an ex-
pansion of the function in termsof sinesand cosines. But, expanding either asingle
sineor asinglecosinein termsof sinesand cosinesyieldsthe original sineor cosine.
Note, however, that the Fourier transform of acosineistwo positive spikes, whereas
Fourier transform of asineisone negative and onepositive spike. Thisfollowsfrom
the property that the cosineis an even function (cos —wt = coswt) whereasthe sine
isan odd function (sin —wt = — sin wt).

The Fourier transform of aconstant functionisasingle spike at the origin. Once
again this should be intuitively true. A constant function does not vary in time or
space, and hence, does not contain sines or cosines with non-zero frequencies.

Comparingtheformulafor the Fourier transformwith theformulafor theinverse
Fourier transform, we see that they differ only in the sign of the argument to the
exponential. Thisimpliesthat Fourier transform and the inverse Fourier transform
are qualitatively the same. Thus, if we know the transform from the space domain
to the frequency domain, we also know the transform from the frequency domain to
the space domain. Thus, the Fourier transform of asingle spikeat the origin consists
of sinesand cosines of all frequencies equally weighted.

In the above discussion we have used the term spike several timeswithout prop-
erly defining it. A deltafunction has the property that it is zero everywhere except
at the origin.

o(z)=0 x#0

The value of the deltafunctionis not really defined, but itsintegral is. That is,

/:o §(z)dz =1
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Figure 9.6: Fourier transform pairs. From top to bottom: coswz, sinwz, §(z),
shah(z), and e,
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Figure 9.7: Animage and its Fourier transform

Oneimaginesadeltafunction to be asquare pulse of unit areain thelimit asthe base
of the pulse becomes narrower and narrower and goes towards zero.

The example Fourier transform pairs also illustrate two other functions. The
Fourier transform of asequence of spikesconsist of asequence of spikes (asequence
of spikes is sometimes referred to as the shah function). This will be very useful
when discussing sampling.

It also turns out that the Fourier transform of a Gaussian is equal to a Gaussian.

The spectrum of afunction tellstherelativeamountsof high and low frequencies
in the function. Rapid changes imply high frequencies, gradual changesimply low
frequencies. The zero frequency component, or dc term, isthe average value of the
function.

Theaboveideas apply equally toimages. Figure9.7 showstheray traced picture
and its Fourier transform. In an image, high frequency components contribute to
fine detail, sharp edges, etc. and low frequency components represent large objects
or regions.

Another important concept is that of a bandlimited function. A function is ban-
dlimited if its spectrum has no frequencies above some maximum frequency. Said
another way, the spectra of a bandlimited function occupies a finite interval of fre-
guencies, not the entire frequency range.

To summarize: the key point of this section is that a function f can be easily
converted from the space domain (that is, afunction of z) to the frequency domain
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Figure 9.8: Perfect low-pass (top), high-pass (middle), and band-pass (bottom) fil-
ters.

(that is, afunction, albeit a different function, of w), and vice versa. Thus, a func-
tion can beinterpreted in either of two domains: the space or the frequency domain.
The Fourier transform and the inverse Fourier transform can be used to interconvert
between the two domains. Some properties and operations on functions are easier
to see in the space domain, others are easier to see in the frequency domain.

Convolution and Filtering

The spectrum of a function can be modified to attenuate or enhance different fre-
guencies. Modifying asignal or animagein thisway is called filtering. Mathemat-
ically, the properties of filters are easiest to describe in the frequency domain.

H(w) = F(w) x G(w)

Here, H is the spectrum of the filtered function, £ is the spectrum of the original
function, and (& is the spectrum of thefilter. The symbol x indicates simple multi-
plication. Each frequency component of the input function is multiplied by the cor-
responding frequency component of the filter function to compute the value of the
output function at that frequency component.

The effects of filters are shown in Figure 9.8. Filters are characterized by how
they change different frequency components. A low-passfilter attenuates high fre-
guencies relative to low frequencies; a high-pass filter attenuates low frequencies
relative to high frequencies; a band-passfilter preservesarange of frequenciesrela-
tiveto thoseoutsidethat range. A perfectlow-passfilter leavesall frequenciesbel ow



Figure9.9: Application of alow-passfilter to animage. Noticethat theresulting im-
ageontheright isblurry. Thisis because thefilter removesall the high frequencies
which represent fine detail.

it cut-off frequency and removes all frequencies above the cut-off frequency. Thus,
in the frequency domain, a low-passfilter is a square pulse (see Figure 9.8). Simi-
larly, aperfect high-passfilter completely removesall frequencies below the cut-off
frequency, and a perfect band-passfilter removes all frequencies outside its band.

When animageisfiltered, the effect isvery noticeable. Removing high frequen-
cies leaves a blurry image (see Figure 9.9). Removing low frequencies enhances
the high frequencies and creates a sharper image containing mostly edges and other
rapidly changing textures (see Figure 9.10). The cutoff frequency for the high pass
and the low pass filter is the same in the examples shown in Figure 9.9 and Fig-
ure 9.10. Since the sum of the low and high passfiltersis 1, the sum of the filtered
pictures must equal the original picture. Therefore, if the picturesin the right hand
column are added together, the original picture in the left hand column is returned.

The properties of filters are easiest to seein the frequency domain. However, it
is important to be able to apply filters in either the frequency domain or the space
domain. In the frequency domain, filtering is achieved by simply multplying spec-
tra, value by value. In the space domain, filtering isachieved by amore complicated
operation called convolution.

o0

hy) = f@g= [ f@)gly - a)ds

— 00
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Figure9.10: Application of ahigh-passfilter to animage. Noticethat intheresulting
image the low frequencies have been removed and only placesin theimage that are
changing, such as edges, remain.

Where the binary operator @ represents convol ution.
There are two different ways to conceptualize convolution:

Forward: Slidethefilter ¢ along the axis x defining the input function f. At each
position = , multiply the function ¢ by the value f(z). The scaled and trans-
lated function f(x)g(y — =) isthen accumulated into / and the process pro-
ceeds by dliding g to the next position.

In this view of convolution, the outermost loop iterates over different input
values. Itissometimesreferred to asforward convol ution because each single
input value f(x) mapsforward to several output values h(y + ).

Backward: Slidethefilter g along the axis y defining the output function /. Now,
for each value of g, multiply it by the corresponding value of f and sum the
results. The sum is then written as i (y).

In thisview of convolution, the outermost loop iterates over different output
values. Itissometimesreferred to as backward convol ution because each sin-
gle output value f(z) is computed by mapping backwards into several input
values f.

Toillustrate convolution, suppose the input function consists of asingle spike at
the origin. In the forward view of convolution, we center the filter function at each
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Figure 9.11: Convolution of two square pulses

point along the input function and multiply the filter everywhere by the value of the
function. If the input is a single spike at the origin, then the input function is zero
everywhere except at zero. Thus, the filter is multiplied by zero everywhere except
at the origin where it is multipled by one. Therefore, the result of convolving the
filter by adeltafunctionisthefilter itself. Mathematically, thisfollowsimmediately
from the definition of the delta function.

/_O; §(z)g(y — x)dz = g(y)

Many physical processes may be described asfilters. If such aprocessisdriven
a delta function, or impulse, the output will the be characteristic filtering function
of the system. For thisreason, filters are sometimes referred to asimpul se response
functions.

Convolution is a very important idea so let us consider another example—the
convolution of two sgquare pulses as shown in Figure 9.11. The figure shows the
convolution as a backward mapping. One square pulse, the one corresponding to
the input signal, is shown stationary and centered at the origin. The other square
pulse, representing the filter, moves along the output axis from left to right. Each
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Figure 9.12: The results of convolving a square pulse with itself multiple times.

output value is the sum of the product of the filter and the input. In the case of two
pulses, this equals the area of overlap of the two square pulses. This area starts out
zero when the pulese are digjoint, begins to increase linearly when they first touch,
reaches a maximum when they are superimposed, and then begins to decrease until
they are just touching, after which it returnsto zero. The result isatriangle or tent
function.

Convolving a function or an image with a square pulse is an interesting opera-
tion. First, notice that this can be interpreted as setting the output to the average of
the input function over the areawhere the pulseisnon-zero. Make surethat you are
convinced of thisl Second, recall that the Fourier transform of a square pulseisa
sinc function. Referring to Figure 9.12, notice that the sinc function goesto zero at
higher frequencies. Thus, a sinc function is alow-passfilter. This property should
be intuitively true, since averaging an input image over aregion should blur it and
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remove high frequencies.

What isthe spectrum of thefunction resulting from convolving two square pul ses?
Convolving two functions corresponds to multiplying their spectra, therefore, con-
volving a square pulse with a square pul se corresponds to the multiplication of two
sinc functions. Similarly, the convolution of » pulses correspondsto the sinc raised
the the n’th power. The function produced by convolving a pulse with itself » times
is caled a B-spline. We will encounter B-splines again when discussing methods
for representing curves and surface. Another interesting fact isthat in thelimit asn
goes to infinity the convolution of » pulses approaches a Gauusian,

The convolution theorem states that multiplying two spectrain the frequency do-
main corresponds to convolving the functions in the space domain.

f@ge FxG

Because the Fourier transform and the inverse Fourier transform are so similar, a
symmetricinterpretationisalso true. That is, multiplying two functionsin the space
domain corresponds to convolving the functionsin the frequency domain.

fxge FRG

Sampling and Reconstruction

With this background on frequency space and convolution, we can now analyzethe
processes of sampling and reconstruction.

In the space domain, sampling can be viewed simply as multiplying the signal
by sequence of spikes with unit area. Since the spikes are zero everywhere except
at integer values, this has the result of throwing away all the information except at
the sample points. At the sample points, the result is the value of the function at
that point. This view of sampling in the space domain isillustrated in the top half
of Figure9.13.

Additional insight into the sampling process, however, can be gained by con-
sidering sampling in the frequency domain. Recall the convolution theorem. This
theorem states that multiplying two signals in one domain (in this case, the space
domain) corresponds to convolving the signals in the other domain (the frequency
domain). Thus, multiplying the function by asequenceof spikesin the space domain
corresponds to convolving the spectrum of the original function with the spectrum
of asequence of spikes. However, recall that the Fourier transform of a sequence of
spikesisitself asequenceof spikes. Thus, inthefrequency domain, sampling corre-
sponds to convolving the spectrum of the function with a sequence of spikes. Con-
volving with a sequence of spikes causes the origina function to be replicated—a



18 CHAPTER 9. BASIC SIGNAL PROCESSING

Sampling in the Space Domain

Sampling in the Frequency Domain
Figure 9.13: Sampling
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Reconstruction in the Frequency Domain

Reconstruction in the Space Domain

Figure 9.14: Reconstruction

new copy of the spectrum is centered at a spike. The view of sampling in the fre-
guency domainisillustrated in the bottom half of Figure 9.13.

Now let us consider the reconstruction process. The process of recovering the
origina signal from thesampled signal iseasiest to analyzeinthe frequency domain.
Remember, the sampling process resulted in the replication of the spectrum of the
original function. If thesereplicas do not overlap, then the original can berecovered
by the application of a perfect low-pass filter. Multiplying the replicated spectrum
by asquare pulse centered on the original signals spectrum will remove all the extra
copies of the spectrum. Thisisillustrated in Figure 9.14.

Of course, for every processin one domain we can create adual processin the
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Figure 9.15: Undersampling afunction resultsin aliasing.

other domain. In this case, multiplying the replicated spectrum by a square pulsein
the frequency domain corresponds to convolving the samples with a sinc function
(the Fourier transform of the square pulse) in the spatial domain. The sinc function
interpolates the samples, and therefore reconstructs the continuous image from the
set of samples. Thisisillustrated in Figure 9.14.

Note that a miraculous thing has happened: The result of the sampling and re-
construction processistheoriginal function. That is, noinformationwaslost in sam-
pling process. Thisresult is known as the Sampling Theorem and is due to Claude
Shannon who first discovered it in 1949.

A signal can be reconstructed from its samples without loss of infor-
mation, if the original signal has no frequencies above 1 the sampling
frequency.

For a given bandlimited function, the rate at which it must be sampled is called the
Nyquist Frequency.

Aliasing: Pre- and Post-

There are two reasons the above sampling and reconstruction process may not work
out.

First, when a function is sampled, the replicas of the function’s spectrum may
overlap. In fact, thiswill occur for any function that is not bandlimited, or for any
function which is sampled at less than its Nyquist frequency. When overlap occurs
thereis no hope of recovering the original function.



21

Figure9.16: Samplingasinewave. Samplingthefunctionsin 1.5wx yieldsthe same
values as sampling the function sin 0.5wz. Thus, the higher frequency 1.5w which

is above the Nyquist frequency, cannot be distinguished from the lower frequency
0.5w.

Figure 9.17: Poor Reconstruction resultsin aliasing.

If copies of the spectra overlap, then some frequencies will appear as other fre-
guencies. In particular, high frequencies will foldover and appear as low frequen-
cies. Thissudden appearance of some frequenciesat other frequenciesisreferredto
asaliasing. Theresult of the foldover isthat the reconstruction process can not dif-
ferentiate between the origina spectrum and the aliased spectrum, and, hence, the
function cannot be perfectly reconstructed. This effect is shown in Figure 9.15.

Toillustratealiasing consider the following thought experiment. Consider asine
wave with afrequency of 1.5 cycles per sample. Now sample the sine wave. This
sampling rate is less than the frequency of the function, and hence we may expect
aliasingtoresult. ThisisseeninFigure9.16. That figureshowsthat samplingsin (271.5)x
yields the same values as sampling sin(270.5)z.
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Implicit in the sampling theorem is that the function be perfectly reconstructed.
Unfortunately, this is often not possible in practice. For one, the perfect low-pass
filter is asinc function. However, convolving the sampled with a sinc function is
impractical because the sinc function has infinite extent. Also, in general, recon-
struction is a property of the hardware and media. For example, most displays em-
ploy atwo step process. In the first step the digital value is converted to an analog
value using a D/A convertor. Most D/A convertors sample the input and hold them
constant until the next input is available. This corresponds to convolving the sam-
pled signal with asquare pulse. In the second step the anal og voltageis converted to
light using phosphors on the monitor. M ost phosphors emit asmall Gaussian spot of
light centered at the location of the electron beam. This has the effect of convolv-
ing the signal with a Gaussian. Although the combination of these two stepsis a
low-pass filter, the filtering is not perfect.

Thisisillustrated in Figure 9.17. Suppose the function is reconstructed with a
sgquare pulse. That would correspond to multiplying its spectratimes the transform
of the pulse—asinc. However, asinc does not perfectly remove all the replicas of
the spectraproduced by the sampling process, and so aliasing artifacts would bevis-
ible.

In both these cases, frequencies may masguerade as other frequencies. Thefirst
cause—dueto undersampling—iscalled pre-aliasing; the second cause—dueto bad
reconstruction—-is called post-aliasing.



