

COS 426, Spring 2015 Princeton University

Slides from Adam Finkelstein, Forrester Cole, Doug DeCarlo, Rob Kalnins, Allison Klein, Emil Praun

Rendering alternatives

Non/Photorealism in painting

Bouguereau 1891

van Gogh 1889

Realistic modeling and rendering

Non-photorealistic rendering (NPR)

- Explanation
- Illustration
- Storytelling
- Design

A Brief History of NPR...

NPR: Simulating various media

Technical Illustration [Saito 90]

Watercolor [Curtis 97]

Pen & Ink [Winkenbach 94]

Paint [Hertzmann 98]

NPR: Dynamic imagery

Painterly rendering for...

3D models [Meier 96]

Video [Litwinowicz 97]

NPR: Interactive rendering

NPR: Abstraction & attention

Provide control over point of emphasis Control clutter in the rendered image

Stylized lines in commercial apps...

Tools for stylized rendering

Toon shading

Stylized strokes

Paper Effect

Detail Marks

Hatching

Outlines

Tools for stylized rendering

Toon shading

Stylized strokes

Paper Effect

Detail Marks

Hatching

Outlines

Toon shading

Threshold / remap n · I (n · v for headlight)

Toon shading

Tools for stylized rendering

Toon shading

Stylized strokes

Paper Effect

Detail Marks

Hatching

Outlines

Paper Effect

Height field texture:

Peaks catch pigment

Valleys resist pigment

Implementation:

Pixel shader

Paper effect

Tools for stylized rendering

Toon shading

Stylized strokes

Paper Effect

Detail Marks

Hatching

Outlines

Hatching based on n · I

Tonal Art Maps

Collection of stroke images
Will blend → design with high coherence
Stroke nesting property

Texture Blending

Hatching direction

Along lines of principal curvature

(this can also be used for growing explicit hatching strokes)

Stroke-based hatching

[Winkenbach 94, 96]

[Hertzmann 2000]

[Sousa 99]

Painterly rendering

Object- or image-space paint strokes

3D models [Meier 96]

Video [Litwinowicz 97]

Stippling: density ~ n · I

[Secord02]

Tools for stylized rendering

Toon shading

Stylized strokes

Paper Effect

Detail Marks

Hatching

Outlines

How to Describe Shape-Conveying Lines?

Image-space features

- Object-space features
 - View-independent
 - View-dependent

[Flaxman 1805]

Image-Space Lines

- Intuitive motivation; well-suited for GPU
- Difficult to stylize

Examples:

- Isophotes (toon-shading boundaries)
- Edges (e.g., [Canny 1986])
- Ridges, valleys of illumination
 [Pearson 1985, Rieger 1997,
 DeCarlo 2003, Lee 2007, ...]

Image Edges and Extremal Lines

Edges:

Local maxima of gradient magnitude, in gradient direction

Ridges/valleys:

Local minima/maxima of intensity, in direction of max Hessian eigenvector

- Intrinsic properties of shape;
 can be precomputed
- Under changing view, can be misinterpreted as surface markings

Topo lines: constant altitude

Creases: infinitely sharp folds

Ridges and valleys (crest lines)

- Local maxima of curvature
- Sometimes effective, sometimes not

- + Seem to be perceived as conveying shape
- Must be recomputed per frame

Silhouettes:

Boundaries between object and background

Occluding contours:

- Depth discontinuities
- Surface normal perpendicular to view direction

Occluding Contours

For any shape: locations of depth discontinuities

- View dependent
- Also called "interior and exterior silhouettes"

Occluding Contours

For smooth shapes: points at which $n \cdot v = 0$

Occluding Contours on Meshes

Applying either definition on polygonal meshes can result in messy lines

Alternative: interpolate normals within faces

- Start with per-vertex normals
- Interpolate per-face (same as Phong shading)
- Compute $n \cdot v$ at each point, find zero crossings
- Potential snag: visibility

Occluding Contours on Meshes

There are other lines...

There are other lines...

Hypothesis: some are "almost contours"

Suggestive Contours

"Almost contours":

Points that become contours in nearby views

contours

contours + suggestive contours

Suggestive Contours: Definition 1

Contours in nearby viewpoints

(not corresponding to contours in closer views)

Suggestive Contours: Definition 2

n · v not quite zero, but a local minimum(in the projected view direction w)

contours

contours + suggestive contours

contours

contours + suggestive contours

contours

contours + suggestive contours

Comparison: object vs image

suggestive contours

image valleys

Tools for stylized rendering

Toon shading

Stylized strokes

Paper Effect

Detail Marks

Hatching

Outlines

Crease Stylization

"Rubber-stamping" Synthesis from Example

Synthesis uses Markov model. Similar to "video textures" [Schödl 00]

Stylization as Offsets

- Artist over-sketches crease
- Stylization recorded as 2D offsets
- Applied to new base path

Silhouette Stylization

Silhouettes are view-dependent.

- Problem #1: localized stylization?
- Solution: "rubber-stamp" globally

Silhouette Tracking

Silhouettes are view-dependent.

- Problem #2: parameterization coherence
- Solution: screen-space tracking

WYSIWYG NPR

- Draw into 3D scene
- Retain style in new views
- Ensure coherent animation

Aesthetic flexibility

User guided approaches

- the user explicitly marks the important content

[Durand et al. 2001]

[Hertzmann 2001]

Indication in pen and ink illustration

the user specified what content was important

[Winkenbach and Salesin 1994]

Provide control over point of emphasis

control clutter in the rendered image

[Cole et al. 2006]

Rendering specific content: trees

programatically leave out lines in center of tree

Select elements based on density and clutter

drop strokes in areas of high density

[Grabli et al. 2004]

User guided approaches

- infer important content from a user's eye movements
- evaluate using eye tracking [Santella and DeCarlo 2004]

[DeCarlo and Santella 2002]

Eye movements

Recorded using commercial eye-trackers

Eye movements

Eyes dwell on particular locations during fixations •

- Quick motions between these locations are made via saccades
- Longer fixations indicate viewer interest

Abstraction and Stylization

[DeCarlo 2002]

Without eye movements: No meaningful abstraction

One knob to control detail...

more detail less detail

Variations of images

Photo High detail Low detail

Eye tracking

Automatic Salience

Summary

NPR provides control over style, abstraction

Common ingredients: toon shading, outline strokes, hatching, paint, paper effect

