Parametric Surfaces

COS 426, Spring 2015
Princeton University
3D Object Representations

- Points
 - Range image
 - Point cloud

- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Application specific
3D Object Representations

- Points
 - Range image
 - Point cloud

- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Application specific
Parametric Surfaces

- Applications
 - Design of smooth surfaces in cars, ships, etc.
Parametric Surfaces

- Applications
 - Design of smooth surfaces in cars, ships, etc.
Parametric Surfaces

• Applications
 - Design of smooth surfaces in cars, ships, etc.
 - Creating characters or scenes for movies
Parametric Curves

- Applications
 - Defining motion trajectories for objects or cameras
Parametric Curves

• Applications
 ◦ Defining motion trajectories for objects or cameras
 ◦ Defining smooth interpolations of sparse data
Parametric Curves

• Applications
 ◦ Defining motion trajectories for objects or cameras
 ◦ Defining smooth interpolations of sparse data
Outline

• Parametric curves
 ◦ Cubic B-Spline
 ◦ Cubic Bézier

• Parametric surfaces
 ◦ Bi-cubic B-Spline
 ◦ Bi-cubic Bézier
Outline

- Parametric curves
 - Cubic B-Spline
 - Cubic Bézier

- Parametric surfaces
 - Bi-cubic B-Spline
 - Bi-cubic Bézier
Parametric Curves

- Defined by parametric functions:
 - \(x = f_x(u) \)
 - \(y = f_y(u) \)

- Example: line segment

\[
\begin{align*}
 f_x(u) &= (1-u)x_0 + ux_1 \\
 f_y(u) &= (1-u)y_0 + uy_1
\end{align*}
\]

\(u \in [0..1] \)
Parametric Curves

- Defined by parametric functions:
 - \(x = f_x(u) \)
 - \(y = f_y(u) \)

- Example: ellipse

\[
\begin{align*}
 f_x(u) &= r_x \cos \frac{u}{2\pi} \\
 f_y(u) &= r_y \sin \frac{u}{2\pi}
\end{align*}
\]

\(u \in [0..1] \)
Parametric curves

How to easily define arbitrary curves?

\[x = f_x(u) \]
\[y = f_y(u) \]
Parametric curves

How to easily define arbitrary curves?

\[x = f_x(u) \]
\[y = f_y(u) \]

Use functions that “blend” control points

\[x = f_x(u) = V_{0x} (1 - u) + V_{1x} u \]
\[y = f_y(u) = V_{0y} (1 - u) + V_{1y} u \]
Parametric curves

More generally:

\[x(u) = \sum_{i=0}^{n} B_i(u) \cdot V_i^x \]

\[y(u) = \sum_{i=0}^{n} B_i(u) \cdot V_i^y \]
Parametric curves

What $B(u)$ functions should we use?

\[x(u) = \sum_{i=0}^{n} B_i(u) \cdot V_i \cdot x \]

\[y(u) = \sum_{i=0}^{n} B_i(u) \cdot V_i \cdot y \]
Parametric curves

What $B(u)$ functions should we use?

\[x(u) = \sum_{i=0}^{n} B_i(u) \times V_i x \]

\[y(u) = \sum_{i=0}^{n} B_i(u) \times V_i y \]
Parametric curves

What B(u) functions should we use?

\[x(u) = \sum_{i=0}^{n} B_i(u) \cdot V_i^x \]

\[y(u) = \sum_{i=0}^{n} B_i(u) \cdot V_i^y \]
Parametric Polynomial Curves

• Polynomial blending functions:

\[B_i(u) = \sum_{j=0}^{m} a_j u^j \]

• Advantages of polynomials
 ○ Easy to compute
 ○ Infinitely continuous
 ○ Easy to derive curve properties
Parametric Polynomial Curves

- Polynomial blending functions:
 \[B_i(u) = \sum_{j=0}^{m} a_j u^j \]

- What degree polynomial?
 - Easy to compute
 - Easy to control
 - Expressive
Piecewise Parametric Polynomial Curves

- **Splines:**
 - Split curve into segments
 - Each segment defined by low-order polynomial blending subset of control vertices

- **Motivation:**
 - Same blending functions for every segment
 - Prove properties from blending functions
 - Provides local control & efficiency

- **Challenges**
 - How choose blending functions?
 - How determine properties?
Cubic Splines

- Some properties we might like to have:
 - Local control
 - Continuity
 - Interpolation?
 - Convex hull?

Blending functions determine properties

Properties determine blending functions

\[B_i(u) = \sum_{j=0}^{m} a_j u^j \]
Outline

• Parametric curves
 ➢ Cubic B-Spline
 ○ Cubic Bézier

• Parametric surfaces
 ○ Bi-cubic B-Spline
 ○ Bi-cubic Bézier
Cubic B-Splines

- Properties:
 - Local control
 - C^2 continuity at joints (infinitely continuous within each piece)
 - Approximating
 - Convex hull
Cubic B-Spline Blending Functions

Blending functions:

\[B_i(u) = \sum_{j=0}^{m} a_j u^j \]
Cubic B-Spline Blending Functions

- How derive blending functions?
 - Cubic polynomials
 - Local control
 - C^2 continuity
 - Convex hull
Cubic B-Spline Blending Functions

- Four cubic polynomials for four vertices
 - 16 variables (degrees of freedom)
 - Variables are a_i, b_i, c_i, d_i for four blending functions

\[
\begin{align*}
 b_{-0}(u) &= a_0 u^3 + b_0 u^2 + c_0 u + d_0 \\
 b_{-1}(u) &= a_1 u^3 + b_1 u^2 + c_1 u + d_1 \\
 b_{-2}(u) &= a_2 u^3 + b_2 u^2 + c_2 u + d_2 \\
 b_{-3}(u) &= a_3 u^3 + b_3 u^2 + c_3 u + d_3
\end{align*}
\]
Cubic B-Spline Blending Functions

- C^2 continuity implies 15 constraints
 - Position of two curves same
 - Derivative of two curves same
 - Second derivatives same
Cubic B-Spline Blending Functions

Fifteen continuity constraints:

\[
\begin{align*}
0 &= b_{-0}(0) \\
0 &= b_{-0}'(0) \quad 0 &= b_{-0}''(0) \\
b_{-0}(1) &= b_{-1}(0) \quad b_{-0}'(1) &= b_{-1}'(0) \\
b_{-1}(1) &= b_{-2}(0) \quad b_{-1}'(1) &= b_{-2}'(0) \\
b_{-2}(1) &= b_{-3}(0) \quad b_{-2}'(1) &= b_{-3}'(0) \\
b_{-3}(1) &= 0 \quad b_{-3}'(1) &= 0 \\
\end{align*}
\]

One more convenient constraint:

\[
b_{-0}(0) + b_{-1}(0) + b_{-2}(0) + b_{-3}(0) = 1
\]
Cubic B-Spline Blending Functions

• Solving the system of equations yields:

\[b_{-3}(u) = -\frac{1}{6} u^3 + \frac{1}{2} u^2 - \frac{1}{2} u + \frac{1}{6} \]
\[b_{-2}(u) = \frac{1}{2} u^3 - u^2 + \frac{2}{3} \]
\[b_{-1}(u) = -\frac{1}{2} u^3 + \frac{1}{2} u^2 + \frac{1}{2} u + \frac{1}{6} \]
\[b_0(u) = \frac{1}{6} u^3 \]
Cubic B-Spline Blending Functions

- In matrix form:

\[Q(u) = \begin{pmatrix} u^3 & u^2 & u & 1 \end{pmatrix} \frac{1}{6} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} V_0 \\ V_1 \\ V_2 \\ V_3 \end{pmatrix} \]
Cubic B-Spline Blending Functions

In plot form:

$$B_i(u) = \sum_{j=0}^{m} a_j u^j$$

$$b_0$$ $$b_{-1}$$ $$b_{-2}$$ $$b_{-3}$$

$$V_0$$ $$V_1$$ $$V_2$$ $$V_3$$ $$V_4$$ $$V_5$$
Cubic B-Spline Blending Functions

- Blending functions imply properties:
 - Local control
 - Approximating
 - C^2 continuity
 - Convex hull
Outline

• Parametric curves
 ◦ Cubic B-Spline
 ➢ Cubic Bézier

• Parametric surfaces
 ◦ Bi-cubic B-Spline
 ◦ Bi-cubic Bézier
Bézier Curves

- Developed around 1960 by both
 - Pierre Bézier (Renault)
 - Paul de Casteljau (Citroen)

- Today: graphic design (e.g. fonts)

- Properties:
 - Local control
 - Continuity depends on control points
 - Interpolating (every third for cubic)

Blending functions determine properties
Cubic Bézier Curves

Blending functions:

\[B_i(u) = \sum_{j=0}^{m} a_j u^j; \]

\[B_{i-3} \quad B_{i-2} \quad B_{i-1} \quad B_i \]

\[V_0 \quad V_1 \quad V_2 \quad V_3 \quad V_4 \quad V_5 \quad V_6 \]
Cubic Bézier Curves

Bézier curves in matrix form:

\[Q(u) = \sum_{i=0}^{n} V_i \binom{n}{i} u^i (1 - u)^{n-i} \]

\[= (1 - u)^3 V_0 + 3u(1 - u)^2 V_1 + 3u^2 (1 - u)V_2 + u^3 V_3 \]

\[= \begin{pmatrix} u^3 & u^2 & u & 1 \end{pmatrix} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} V_0 \\ V_1 \\ V_2 \\ V_3 \end{pmatrix} \]

\[M_{\text{Bézier}} \]
Basic properties of Bézier Curves

• Endpoint interpolation:

\[Q(0) = V_0 \]
\[Q(1) = V_n \]

• Convex hull:
 - Curve is contained within convex hull of control polygon

• Symmetry

\[Q(u) \text{ defined by } \{V_0,\ldots,V_n\} \equiv Q(1-u) \text{ defined by } \{V_n,\ldots,V_0\} \]
Bézier Curves

• Curve $Q(u)$ can also be defined by nested interpolation:

V_i are control points
\{V_0, V_1, ..., V_n\} is control polygon
Enforcing Bézier Curve Continuity

- C^0: $V_3 = V_4$
- C^1: $V_5-V_4 = V_3-V_2$
- C^2: $V_6-2V_5+V_4 = V_3-2V_2+V_1$
Outline

- Parametric curves
 - Cubic B-Spline
 - Cubic Bézier

- Parametric surfaces
 - Bi-cubic B-Spline
 - Bi-cubic Bézier
Parametric Surfaces

- Defined by parametric functions:
 - $x = f_x(u,v)$
 - $y = f_y(u,v)$
 - $z = f_z(u,v)$

FvDFH Figure 11.42
Parametric Surfaces

- Defined by parametric functions:
 - \(x = f_x(u,v) \)
 - \(y = f_y(u,v) \)
 - \(z = f_z(u,v) \)

- Example: quadrilateral

\[
\begin{align*}
 f_x(u, v) &= (1 - v)(1 - u)x_0 + ux_1 + v(1 - u)x_2 + ux_3 \\
 f_y(u, v) &= (1 - v)(1 - u)y_0 + uy_1 + v(1 - u)y_2 + uy_3 \\
 f_z(u, v) &= (1 - v)(1 - u)z_0 + uz_1 + v(1 - u)z_2 + uz_3
\end{align*}
\]
Parametric Surfaces

- Defined by parametric functions:
 - \(x = f_x(u,v) \)
 - \(y = f_y(u,v) \)
 - \(z = f_z(u,v) \)

- Example: quadrilateral

\[
\begin{align*}
 f_x(u,v) &= (1 - v)((1 - u)x_0 + ux_1) + v((1 - u)x_2 + ux_3) \\
 f_y(u,v) &= (1 - v)((1 - u)y_0 + uy_1) + v((1 - u)y_2 + uy_3) \\
 f_z(u,v) &= (1 - v)((1 - u)z_0 + uz_1) + v((1 - u)z_2 + uz_3)
\end{align*}
\]
Parametric Surfaces

- Defined by parametric functions:
 - $x = f_x(u,v)$
 - $y = f_y(u,v)$
 - $z = f_z(u,v)$

- Example: ellipsoid

 \[
 f_x(u,v) = r_x \cos v \cos u \\
 f_y(u,v) = r_y \cos v \sin u \\
 f_z(u,v) = r_z \sin v
 \]
Parametric Surfaces

To model arbitrary shapes, surface is partitioned into parametric patches
Parametric Patches

- Each patch is defined by blending control points

Same ideas as parametric curves!
Parametric Patches

- Point $Q(u,v)$ on the patch is the tensor product of parametric curves defined by the control points.
Parametric Patches

- Point $Q(u,v)$ on the patch is the tensor product of parametric curves defined by the control points.
Parametric Patches

- Point $Q(u,v)$ on the patch is the tensor product of parametric curves defined by the control points.
Parametric Patches

- Point \(Q(u,v) \) on the patch is the tensor product of parametric curves defined by the control points.
Parametric Patches

- Point $Q(u,v)$ on the patch is the tensor product of parametric curves defined by the control points.
Parametric Bicubic Patches

Point $Q(u,v)$ on any patch is defined by combining control points with polynomial blending functions:

$$Q(u,v) = U M \begin{bmatrix} P_{1,1} & P_{1,2} & P_{1,3} & P_{1,4} \\ P_{2,1} & P_{2,2} & P_{2,3} & P_{2,4} \\ P_{3,1} & P_{3,2} & P_{3,3} & P_{3,4} \\ P_{4,1} & P_{4,2} & P_{4,3} & P_{4,4} \end{bmatrix} M^T V^T$$

$U = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \quad V = \begin{bmatrix} v^3 & v^2 & v & 1 \end{bmatrix}$

Where M is a matrix describing the blending functions for a parametric cubic curve (e.g., Bézier, B-spline, etc.)
B-Spline Patches

\[Q(u, v) = U M_{\text{B-Spline}} \begin{bmatrix} P_{1,1} & P_{1,2} & P_{1,3} & P_{1,4} \\ P_{2,1} & P_{2,2} & P_{2,3} & P_{2,4} \\ P_{3,1} & P_{3,2} & P_{3,3} & P_{3,4} \\ P_{4,1} & P_{4,2} & P_{4,3} & P_{4,4} \end{bmatrix} M_{\text{B-Spline}}^T V \]

\[M_{\text{B-Spline}} = \begin{bmatrix} -\frac{1}{6} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{6} \\ \frac{1}{2} & -1 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{6} & \frac{2}{3} & \frac{1}{6} & 0 \end{bmatrix} \]
Bézier Patches

\[Q(u, v) = U M_{\text{Bezier}} \begin{bmatrix} P_{1,1} & P_{1,2} & P_{1,3} & P_{1,4} \\ P_{2,1} & P_{2,2} & P_{2,3} & P_{2,4} \\ P_{3,1} & P_{3,2} & P_{3,3} & P_{3,4} \\ P_{4,1} & P_{4,2} & P_{4,3} & P_{4,4} \end{bmatrix} M_{\text{Bezier}}^T V \]

\[M_{\text{Bezier}} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \]

FvDFH Figure 11.42
Bézier Patches

• Properties:
 ○ Interpolates four corner points
 ○ Convex hull
 ○ Local control
Piecewise Polynomial Parametric Surfaces

Surface is composition of many parametric patches
Piecewise Polynomial Parametric Surfaces

Must maintain continuity across seams

Same ideas as parametric splines!
Bézier Surfaces

• Continuity constraints are similar to the ones for Bézier splines
Bézier Surfaces

- C^0 continuity requires aligning boundary curves
Bézier Surfaces

• C^1 continuity requires aligning boundary curves and derivatives

Watt Figure 6.26b
Parametric Surfaces

• Properties
 ? Natural parameterization
 ? Guaranteed smoothness
 ? Intuitive editing
 ? Concise
 ? Accurate
 ? Efficient display
 ? Easy acquisition
 ? Efficient intersections
 ? Guaranteed validity
 ? Arbitrary topology
Parametric Surfaces

• Properties
 - Natural parameterization
 - Guaranteed smoothness
 - Intuitive editing
 - Concise
 - Accurate
 - Efficient display
 - Easy acquisition
 - Efficient intersections
 - Guaranteed validity
 - Arbitrary topology