Computer Graphics

Adam Finkelstein
Princeton University
COS 426, Spring 2015
Overview

• Administrative stuff
 ◦ People, times, places, etc.

• Syllabus
 ◦ What will I learn in this course?

• Imaging
 ◦ Getting started …
Administrative Stuff

• Instructors
 ◦ Adam Finkelstein
 ◦ Huiwen Chang and Maciej Halber

• Book

• Web page
 ◦ www.cs.princeton.edu/courses/archive/spr15/cos426/
COS 426:
Computer Graphics
Spring 2015

General Information

Description: This course will study topics in computer graphics, covering methods in image processing, modeling, rendering, and animation.

Prerequisites: The course is appropriate for students who have taken COS217 and COS226 (or the equivalent). Javascript will be used as the main programming language.

Coursework: The grade will be based on four programming assignments (50%), two exams (25%), a final project (25%).

Instructors: Professor Adam Finkelstein with TAs: Huiwen Chang and Maciej Halber.

Students: requires PU login

Time/place: Lecture: Tue & Thu 3-4:20pm, Friend 006
Precepts: Wed 7:30-8:30pm, Friend 008.
Office Hours: TBA

Questions: We will use Piazza to handle Q&A this semester. Please post your questions there instead of mailing the staff, if possible.
Coursework

• Exams (25%)
 ◦ In class (3/12 and 4/30)

• Programming Assignments (50%)
 ◦ Assignment #1: Image Processing (due 2/22)
 ◦ Assignment #2: Modeling (due 3/8)
 ◦ Assignment #3: Rendering (due 4/12)
 ◦ Assignment #4: Animation (due 4/26)

• Final Project (25%)
 ◦ Game! (due at end of semester)
Assignments

There will be 4 programming assignments:

- Assignment #1: Image Processing (due Sun 2/22)
- Assignment #2: Modeling (due Sun 3/8)
- Assignment #3: Rendering (due Sun 4/12)
- Assignment #4: Animation (due Sun 4/26)

These will be linked as the assignments go online.

Exams

There will be 2 exams. Both are closed-book. However, you may bring a 8.5x11” cheat-sheet with writing on both sides, if you wish. Examples of previous exams can be found here.

- Exam #1: Everything before spring break (in class on Thurs March 12)
- Exam #2: Everything after spring break (in class on Thurs April 30)

Programming Resources

Assignments will be implemented in javascript. Any computer and browser may be used for development though we expect to
Programming Assignments

• When?
 ◦ Roughly every 2-3 weeks

• Where?
 ◦ Anywhere you want, e.g. home or clusters

• How?
 ◦ Javascript
 ◦ Some OpenGL

• What?
 ◦ Basic feature lists
 ◦ Extra credit lists
 ◦ Art contest
Art Contest

• Everybody should submit entries!
 - 1 point for submitting
 - 2 points for winning

Cool Images/Videos
(Jimmy Zuber, CS 426, Spring 2014)

Bloopers
(Alex Combs, CS 426, Spr05)

Characters for web banner
Collaboration Policy

• Overview:
 ◦ You must write your own code
 ◦ You must not leverage code written by others
 ◦ You must reference your resources

• It’s OK to …
 ◦ Talk with other students about ideas, approaches, etc.
 ◦ Get ideas from information in books, wikipedia, etc.
 ◦ Use “support” code provided with our assignments

• It’s NOT OK to …
 ◦ Show your code to another student (e.g. post on web)
 ◦ Look at code written by another student
 ◦ Leverage code acquired from other sources
Questions / Discussion

• Piazza (www.piazza.com)
 ◦ View announcements
 ◦ Post questions to the class
 ◦ Answer other students questions
 ◦ Set up for everyone enrolled as of today
 ◦ Use this instead of email to instructors/Tas
 (can send private messages)
Precepts

• Schedule
 ◦ Wed 7:30-8:30 (Friend 008 – just down the hall)
Overview

• Administrative stuff
 ◦ People, times, places, etc.

➢ Syllabus
 ◦ What will I learn in this course?

• Imaging
 ◦ Getting started …
Introduction

- What is computer graphics?
 - Imaging = representing 2D images
 - Modeling = representing 3D objects
 - Rendering = constructing 2D images from 3D models
 - Animation = simulating changes over time
Syllabus

I. Imaging
II. Modeling
III. Rendering
IV. Animation

Image Processing
(Rusty Coleman, CS426, Fall99)

Modeling
(Andrew Werner, Spring 2014)

Rendering
(Michael Bostock, CS426, Fall99)

Animation
(Riley Thomasson, Spring 2014)
Part I: Imaging

- Image Basics
 - Definition
 - Color models

- Image Representation
 - Sampling
 - Reconstruction
 - Quantization & Aliasing

- Image Processing
 - Filtering
 - Warping
 - Composition
 - Morphing
Part II: Modeling

• Representations of geometry
 ◦ Curves: splines
 ◦ Surfaces: meshes, splines, subdivision
 ◦ Solids: voxels, CSG, BSP

• Procedural modeling
 ◦ Sweeps
 ◦ Fractals
 ◦ Grammars

Shell
(Douglas Turnbull, CS 426, Fall99)

(Brendan Chou, Spring 2014)
Part III: Rendering

• 3D Rendering Pipeline
 ◦ Modeling transformations
 ◦ Viewing transformations
 ◦ Hidden surface removal
 ◦ Illumination, shading, and textures
 ◦ Scan conversion, clipping
 ◦ Hierarchical scene graphics
 ◦ OpenGL

• Global illumination
 ◦ Ray tracing
 ◦ Radiosity

Ray Tracing
(Sid Kapur; CS 426, Spr04)

Pixel Shading
(Final Fantasy, Square Pictures)
Part IV: Animation

- Keyframing
 - Kinematics
 - Articulated figures

- Motion capture
 - Capture
 - Warping

- Dynamics
 - Physically-based simulations
 - Particle systems

- Behaviors
 - Planning, learning, etc.
Applications

- **Entertainment**
 - Computer-aided design
 - Scientific visualization
- **Training**
- **Education**
- **E-commerce**
- **Computer art**

Geri’s Game
(Pixar Animation Studios)

Minecraft
Applications

- Entertainment
- Computer-aided design
- Scientific visualization
- Training
- Education
- E-commerce
- Computer art

Gear Shaft Design
(Intergraph Corporation)

Los Angeles Airport
(Bill Jepson, UCLA)

Boeing 777 Airplane
(Boeing Corporation)
Applications

- Entertainment
- Computer-aided design
- **Scientific visualization**
- Training
- Education
- E-commerce
- Computer art

Apo A-1
(Theoretical Biophysics Group, University of Illinois at Urbana-Champaign)

Visible Human
(National Library of Medicine)

Airflow Inside a Thunderstorm
(Bob Wilhelmson, University of Illinois at Urbana-Champaign)
Applications

- Entertainment
- Computer-aided design
- Scientific visualization

Training
- Education
- E-commerce
- Computer art

Driving Simulation
(Evans & Sutherland)

Desk Assembly
(Silicon Graphics, Inc.)

Flight Simulation
(NASA)
Applications

• Entertainment
• Computer-aided design
• Scientific visualization
• Training

→ Education
• E-commerce
• Computer art

Forum of Trajan
(Bill Jepson, UCLA)

Human Skeleton
(SGI)
Applications

• Entertainment
• Computer-aided design
• Scientific visualization
• Training
• Education

→ E-commerce
• Computer art

Interactive Kitchen Planner
(Matsushita)

Virtual Phone Store
(Lucent Technologies)
Applications

• Entertainment
• Computer-aided design
• Scientific visualization
• Training
• Education
• E-commerce

➤ Computer art

Blair Arch

(Marissa Range ‘98)
Overview

• Administrative stuff
 ◦ People, times, places, etc.

• Syllabus
 ◦ What will I learn in this course?

➢ Imaging
 ◦ Let’s get started …
What is an Image?
What is an Image?

An image is a 2D rectilinear array of pixels.

Digital image
What is a Pixel?

Pixel

Digital image
What is a Pixel?

Sample of a function at a position

Digital image
What Function?
What Function?

Could be any function …

Art of Science
(Friend Center hallway)
What Function?

What about photographic images?

$I(x,y)$?

Digital photograph
Plenoptic Function

- Each pixel of a photographic image is a function of radiance arriving at a sensor.
Plenoptic Function

• The 7D plenoptic function \(L(x,y,z,\theta,\phi,t,\lambda) \) describes the radiance arriving ...
 - at any position \((x,y,z)\),
 - in any direction \((\theta,\phi)\),
 - at any time \((t)\),
 - at any frequency \((\lambda)\)
Photographic Images

• An idealized photographic image contains a 2D array of samples of the 7D plenoptic function
 ○ at a particular camera viewpoint,
 ○ for 2D array of directions,
 ○ at a certain time,
 ○ at certain frequencies
Photographic Images

In practice, can’t measure plenoptic function directly

- Photoreceptors in eye
- Film in a traditional camera
- CCD cells in digital camera
Photographic Images

Photographic pixels as finite samples of the plenoptic function

\[f(x, y, z, \theta, \phi, t, \lambda) \]
What Frequencies?

\[f(x, y, z, \theta, \phi, t, \lambda) \]
Electromagnetic Spectrum

• Visible light frequencies range between ...
 ○ Red = 4.3×10^{14} hertz (700nm)
 ○ Violet = 7.5×10^{14} hertz (400nm)

Figures 15.1 from H&B
Color

• The color of light is characterized by its spectrum
 ○ Magnitude of energy at every visible frequency

White Light

Orange Light

Figures 15.3-4 from H&B
How do we represent a color in a computer?

Must store a finite amount of data to represent magnitudes for infinite number of frequencies

White Light

Orange Light

Figures 15.3-4 from H&B
Color Frame Buffer

Table

<table>
<thead>
<tr>
<th>Red</th>
<th>Green</th>
<th>Blue</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>150</td>
<td>75</td>
<td>0</td>
</tr>
</tbody>
</table>

Diagram

- **Red channel**
- **Green channel**
- **Blue channel**

The diagram illustrates the color frame buffer with values for red, green, blue, and alpha channels.
Frame Buffer Display

Figure 1.2 from FvDFH
Frame Buffer Display

Refresh rate is usually 60-75Hz

Figure 1.3 from FvDFH
Frame Buffer Display

• Video display devices
 - Liquid Crystal Display (LCD)
 - Cathode Ray Tube (CRT)
 - Plasma panels
 - Thin-film electroluminescent displays
 - Light-emitting diodes (LED)

• Hard-copy devices
 - Ink-jet printer
 - Laser printer
 - Film recorder
 - Electrostatic printer
 - Pen plotter
Frame Buffer Display

Example: liquid crystal display (LCD)

Figure 2.16 from H&B
Frame Buffer Display

Example: liquid crystal display (LCD)

Colors are interleaved
Frame Buffer Display

- Example: cathode ray tube (CRT)
Frame Buffer Display

Note: image is an array of samples – continuous function is “reconstructed” during display.

Image is reconstructed by displaying pixels with finite area (Gaussian)
Color

Why red, green, and blue (RGB)?
Spectral-response functions of each of the three types of cones on the human retina.

Tristimulus theory of color

Figure 13.18 from FvDFH
RGB Color Model

Colors are additive

<table>
<thead>
<tr>
<th>R</th>
<th>G</th>
<th>B</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Black</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Red</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>Green</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>Blue</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>Yellow</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>Magenta</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>Cyan</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>White</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>?</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>?</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
<td>?</td>
</tr>
<tr>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
<td>?</td>
</tr>
</tbody>
</table>

Plate II.3 from FvDFH
Other Color Models

- CMY
- HSV
- XYZ
- La*b*
- Others

Different color models are useful for different purposes
CMY Color Model

![CMY Color Model Diagram]

Useful for printers because colors are subtractive

<table>
<thead>
<tr>
<th>C</th>
<th>M</th>
<th>Y</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>White</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Cyan</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>Magenta</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>Yellow</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>Blue</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>Green</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>Red</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>Black</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Plate II.7 from FvDFH
CMY Color Model

Figure 15.14 from H&B
HSV Color Model
HSV Color Model

Useful for user interfaces because dimensions are intuitive

<table>
<thead>
<tr>
<th>H</th>
<th>S</th>
<th>V</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>Red</td>
</tr>
<tr>
<td>120</td>
<td>1.0</td>
<td>1.0</td>
<td>Green</td>
</tr>
<tr>
<td>240</td>
<td>1.0</td>
<td>1.0</td>
<td>Blue</td>
</tr>
<tr>
<td>*</td>
<td>0.0</td>
<td>1.0</td>
<td>White</td>
</tr>
<tr>
<td>*</td>
<td>0.0</td>
<td>0.5</td>
<td>Gray</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>0.0</td>
<td>Black</td>
</tr>
<tr>
<td>60</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>0.0</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

Figure 15.16&15.17 from H&B
HSV Color Model

- HSV interpretation in terms of color spectrum
 - Hue = dominant frequency (highest peak)
 - Saturation = excitation purity (ratio of highest to rest)
 - Value = luminance (area under curve)

Figures 15.3-4 from H&B
XYZ Color Model (CIE)

Figure 15.6 from H&B

Derived from perceptual experiments
All spectra that map to same XYZ give same visual sensation
Normalized amounts of X and Y for colors in visible spectrum
XYZ Color Model (CIE)

Useful for reasoning about coverage of color gamuts

Figure 15.13 from H&B
XYZ Color Model (CIE)

Compare Color Gamuts

Identify Complementary Colors

Determine Dominant Wavelength and Purity

Useful for characterizing perceptual qualities of colors
La*b* Color Model

Non-linear compression of XYZ color space based on perception

Useful for measuring perceptual differences between colors
Summary

- **Images**
 - Pixels are samples
 - Photographs sample plenoptic function

- **Colors**
 - Tristimulus theory of color
 - Different color models for different devices, uses, etc.
 - RGB model is common due to human perception
 - CIE Chromaticity Diagram

- **Next time**
 - Image processing!