
Life cycle of an object
•  construction: creating a new object

–  implicitly, by entering the scope where it is declared
–  explicitly, by calling new
–  construction includes initialization

•  copying: using existing object to make a new one
–  "copy constructor" makes a new object from existing one of the same kind
–  implicitly invoked in (some) declarations, function arguments, function

return
•  assignment: changing an existing object

–  occurs explicitly with =, +=, etc.
–  meaning of explicit and implicit copying must be part of the representation

default is member-wise assignment and initialization
•  destruction: destroying an existing object

–  implicitly, by leaving the scope where it is declared
–  explicitly, by calling delete on an object created by new
–  includes cleanup and resource recovery

Strings: constructors & assignment
•  another type that C and C++ don't provide
•  implementation of a String class combines

–  constructors, destructors, copy constructor
–  assignment, operator =
–  constant references
–  handles, reference counts, garbage collection

•  Strings should behave like strings in Awk, Python, Java, …
–  can assign to a string, copy a string, etc.
–  can pass them to functions, return as results, …

•  storage managed automatically
–  no explicit allocation or deletion
–  grow and shrink automatically
–  efficient

•  can create String from "..." C char* string
•  can pass String to functions expecting char*

"Copy constructor"

•  when a class object is passed to a function, returned from a
function, or used as an initializer in a declaration, a copy is
made:

 String substr(String s, int start, int len)
•  a "copy constructor" creates an object of class X from an
existing object of class X

•  obvious way to write it causes an infinite loop:
 class String {

 String(String s) {...} // doesn't work
 };

•  copy constructor parameter must be a reference so object can
be accessed without copying
 class String {
 String(const String& s) {...}
 // ...
 };

•  copy constructor is necessary for declarations, function
arguments, function return values

String class
class String {
 private:
 char *sp;
 public:
 String() { sp=strdup(""); } // String s;
 String(const char *t) { sp=strdup(t); } // String s("abc");
 String(const String &t) { sp=strdup(t.sp); } // String s(t);
 ~String() { delete [] sp; }

 String& operator =(const char *);// s="abc"
 String& operator =(const String &);// s1=s2

 const char *s() { return sp; } // as char*
};
•  assignment is not the same as initialization

–  changes the state of an existing object
•  the meaning of assignment is defined by a member function
 named operator=!

 x = y means x.operator=(y)

Assignment operators

String& String::operator =(const char *t) { // s = "abc"
 delete [] sp;
 sp = strdup(t);
 return *this;
}
String& String::operator=(const String& t) { // s1 = s2
 if (this != &t) { // avoid s1 = s1
 delete [] sp;
 sp = strdup(t.sp);
 }
 return *this;
}

•  in a member function, this points to current object, so *this
is the object (returned as a reference)

•  assignment operators almost always end with
 return *this

 which returns a reference to the LHS
–  permits multiple assignment s1 = s2 = s3

String class complete
class String {
 private:
 char *sp;
 public:
 String() { sp=strdup(""); } // String s;
 String(const char *t) { sp=strdup(t); } // String s("abc");
 String(const String &t) { sp=strdup(t.sp); } // String s(t);
 ~String() { delete [] sp; }

 String& operator =(const char *);// s="abc"
 String& operator =(const String &);// s1=s2

 const char *s() { return sp; } // as char*
};
String& String::operator =(const char *s) {
 if (sp != s) {
 delete [] sp;
 strdup(s);
 }
 return *this;
}
String& String::operator =(const String &t) {
 if (this != &t) {
 delete [] sp;
 strdup(t.sp);
 }
 return *this;
}

continued
main()
{
 String s = "abc", t = "def", u = s, w;

 printf("%s %s %s [%s]\n",
 s.s(), t.s(), u.s(), w.s());
 s = "1234";
 s = s;
 printf("s=%s\n", s.s());
 s = s.s();
 printf("s2=%s\n", s.s());
 printf("u=%s\n", u.s());
 s = t = u = "asdf";
 printf("%s %s %s\n", s.s(), t.s(), u.s());
}

Handles and reference counts
•  how to avoid unnecessary copying for classes like strings, arrays,
other containers

•  copy constructor may allocate new memory even if unnecessary
–  e.g., in f(const String& s) string value would be copied
 even if it won't be changed by f!

•  a handle class manages a pointer to the real data
•  implementation class manages the real data

–  string data itself
–  counter of how many Strings refer to that data
–  when String is copied, increment the ref count
–  when String is destroyed, decrement the ref count
–  when last reference is gone, free all allocated memory

•  with a handle class, copying only increments reference count
–  "shallow" copy instead of "deep" copy

Reference counts

 s = "abc"

 t = s

 t = "def"

1

2

1 1

abc

abc

abc def

Reference/Use counts
class Srep { // string representation
 char *sp; // data
 int n; // ref count
 Srep(const char *s = "") : n(1), sp(strdup(s)) {}
 ~Srep() { delete [] sp; }
 friend class String;
};

class String {
 Srep *r;
 public:
 String(const char *);
 String(const String &);
 ~String();

 String& operator =(const String &); // s1 = s2;
 String& operator =(const char *); // s = "abc";
 const char *s() { return r->sp; }
};

Reference counts, part 2
// constructors, destructor

String::String(const char *s = "") {
 r = new Srep(s); // String s="abc"; String s1;
}

String::String(const String &t) { // String s=t;
 t.r->n++; // ref count
 r = t.r;
}

String::~String() {
 if (--r->n <= 0) {
 delete r;
 }
}

Reference counts, part 3
String& String::operator =(const char *s) {
 if (r->n > 1) { // disconnect self
 r->n--;
 r = new Srep(s);
 } else {
 delete [] r->sp; // free old String
 r->sp = strdup(s);
 }
 return *this;
}

String& String::operator =(const String &t) {
 t.r->n++; // protect against s = s
 if (--r->n <= 0) { // nobody else using me now
 delete r;
 }
 r = t.r;
 return *this;
}

Inheritance

•  a way to create or describe one class in terms of another
–  "a D is like a B, with these extra properties..."
–  "a D is a B, plus…"
–  B is the base class or superclass
–  D is the derived class or subclass

C++, Perl, Python, … use base/derived; Java, Ruby, … use super/sub

•  inheritance is used for classes that model strongly related
concepts
–  objects share some common properties, behaviors, ...
–  and have some properties and behaviors that are different

•  base class contains aspects common to all
•  derived classes contain aspects different for different kinds

Derived classes

class Shape {
 int color;
 Shape& draw();
 // other items common to all Shapes

};
class Rect: public Shape {
 Point origin; double ht, wid;
 // other items specific to Lines
};
class Circle: public Shape {
 Point center; double rad;
 // other items specific to Bonds
};

•  a Rect is a derived class of (a kind of) Shape
–  a Rect "is a" Shape
–  inherits all members of Shape
–  adds its own members

•  a Circle is also a derived class of Shape

 Shape Shape

Circle

Shape

 Rect

More on derived classes
•  derived classes can add their own data members
•  can add their own member functions
•  can override base class functions with
 functions of the same name and argument types

 class Rect: public Shape {
 Point origin; double ht, wid;
 public:
 bool is_square() {...}
 Shape& draw() {...} // overrides Shape::draw()

 };
 class Circle: public Shape {

 Point center; double rad;
 public:
 Shape& draw() {...} // overrides Shape::draw()

 };

 Rect r;
 Circle c;

 r.draw(); // calls Rect::draw()
 c.draw(); // calls Circle::draw()

Virtual Functions
•  a function in a base class that can be overridden by a function
in a derived class (with same name and arguments)

 class Shape {
 public:

 virtual Shape& draw();
 ...

 };

•  "virtual" means that a derived class may provide its own version
of this function, which will be called automatically for
instances of that derived class

•  the base class can provide a default implementation
•  if the base class is "pure", it must be derived from

–  pure base class can't exist on its own; no default implementation

Polymorphism
•  when a pointer or reference to a base-class type points to a
derived-class object

•  and you use that pointer or reference to call a virtual function
•  this calls the derived-class function
•  "polymorphism": proper function to call is determined at run-time
•  e.g., drawing Shapes on a linked list:

 draw_all(Shape *sp) {
 for (; sp != NULL; sp = sp->next)

 sp->draw();
 }

•  virtual function mechanism automatically calls the right draw()
function for each object

•  the loop does not change if more kinds of Shapes are added

Implementation of virtual functions
•  each class object that has virtual functions has one extra word
that holds a pointer to a table of virtual function pointers ("vtbl")

•  each class with virtual functions has one vtbl
•  a call to a virtual function calls it indirectly through the vtbl

Circle C2

draw Rect R1
vtbl for class Rect

vtbl for class Circle Circle C1
draw code

code

Rect R2

Summary of inheritance
•  a way to describe a family of types
•  by collecting similarities (base class)
•  and separating differences (derived classes)

•  polymorphism: proper member functions determined at run time
–  virtual functions are the C++ mechanism

•  not every class needs inheritance
–  may complicate without compensating benefit

•  use composition instead of inheritance?
–  an object contains an (has) an object
 rather than inheriting from it

•  "is-a" versus "has-a"
–  inheritance describes "is-a" relationships
–  composition describes "has-a" relationships

Templates (parameterized types, generics)
•  another approach to polymorphism
•  compile time, not run time
•  a template specifies a class or a function that is the same for
several types
–  except for one or more type parameters

•  e.g., a vector template defines a class of vectors that can be
instantiated for any particular type
vector<int>
vector<String>
vector<vector<int> >

•  templates versus inheritance:
–  use inheritance when behaviors are different for different types

drawing different Shapes is different
–  use template when behaviors are the same, regardless of types

accessing the n-th element of a vector is the same,
 no matter what type the vector is

Vector template class
•  vector class defined as a template, to be instantiated with
different types of elements

template <typename T> class vector {
 T *v; // pointer to array
 int size; // number of elements

 public:
 vector(int n=1) { v = new T[size = n]; }
 T& operator [](int n) {
 assert(n >= 0 && n < size);
 return v[n];
 }

};

vector<int> iv(100); // vector of ints
vector<complex> cv(20); // vector of complex
vector<vector<int> > vvi(10); // vector of vector of int
vector<double> d; // default size

•  compiler instantiates whatever types are used

Template functions
•  can define ordinary functions as templates

–  e.g., max(T, T)

 template <typename T> T max(T x, T y) {
 return x > y ? x : y;

 }

•  requires operator> for type T
 already there for C's arithmetic types

•  don't need a type name to use it
 compiler infers types from arguments
 max(double, double)
 max(int, int)
 max(int, double) doesn't compile: no coercion

•  compiler instantiates code for each different use in a program

Standard Template Library (STL)
Alex Stepanov
 (GE > Bell Labs > HP > SGI > Compaq > Adobe > A9)

•  general-purpose library of
 containers (vector, list, set, map, …)
 generic algorithms (find, replace, sort, …)
•  algorithms written in terms of iterators performing specified
access patterns on containers
–  rules for how iterators work, how containers have to support them

•  generic: every algorithm works on a variety of containers,
including built-in types
–  e.g., find elements in char array, vector<int>, list<…>

•  iterators: generalization of pointer for uniform access to items in
a container

Containers and algorithms
•  STL container classes contain objects of any type

–  sequences: vector, list, slist, deque
–  sorted associative: set, map, multiset, multimap

hash_set and hash_map are in C++11, as "unordered_set" and "unordered_map"
•  each container class is a template that can be instantiated to
contain any type of object

•  generic algorithms
–  find, find_if, find_first_of, search, ...
–  count, min, max, …
–  copy, replace, fill, remove, reverse, …
–  accumulate, inner_product, partial_sum, …
–  sort
–  binary_search, merge, set_union, …

•  performance guarantees
–  each combination of algorithm and iterator type specifies worst-case

(O(…)) performance bound
e.g., maps are O(log n) access, vectors are O(1) access

Iterators
•  a generalization of C pointers
 for (p = begin; p < end; ++p)
 do something with *p
•  range from begin() to just before end() [begin, end)
•  ++iter advances to the next if there is one
•  *iter dereferences (points to value)
•  uses operator != to test for end of range
 for (iter i = v.begin(); i != v.end(); ++i)
 do something with *i

#include <vector>
#include <iterator>
using namespace ::std;
int main() {
 vector<double> v;
 for (int i = 1; i <= 10; i++)
 v.push_back(i);
 vector<double>::const_iterator it;
 double sum = 0;
 for (it = v.begin(); it != v.end(); ++it)
 sum += *it;
 printf("%g\n", sum);
}

Example: STL sort
#include <iostream>
#include <iterator>
#include <vector>
#include <string>
#include <algorithm>
using namespace ::std;

int main() { // sort stdin by lines
 vector<string> vs;
 string tmp;
 while (getline(cin, tmp))
 vs.push_back(tmp);
 sort(vs.begin(), vs.end());
 copy(vs.begin(), vs.end(),
 ostream_iterator<string>(cout, "\n"));
}

•  vs.push_back(s) pushes s onto "back" (end) of vs
•  3rd argument of copy is a "function object" that calls a function
for each iteration
–  uses overloaded operator()

Function objects
•  anything that can be applied to zero or more arguments to get a
value and/or change the state of a computation

•  can be an ordinary function pointer
•  can be an object of a type defined by a class in which the
function call operator operator() is overloaded

 template <typename T> class bigger {
 public:
 bool operator()(T const& x, T const& y) {
 return x > y;
 }
 };

•  to sort strings in decreasing order,
 vector<string> vs;
 sort(vs.begin(), vs.end(), bigger<string>());

•  to sort numbers in decreasing order,
 vector<double> vd;
 sort(vd.begin(), vd.end(), bigger<double>());

Template metaprogramming
•  do computation at compile time to avoid computation at run time

–  evaluating constants, unrolling loops, building data structures

// from Effective C++ 3e, by Scott Meyers

#include <iostream>
using namespace ::std;

template<unsigned n> struct Factorial {
 enum { value = n * Factorial<n-1>::value };
};
template<> struct Factorial<0> {
 enum { value = 1 };
};

int main() {
 std::cout << Factorial<5>::value << "\n";
 std::cout << Factorial<10>::value << "\n";
}

LLVM, Clang and all that
•  LLVM

–  optimizer, code generation support for C-like languages
–  based on intermediate representation LLVM IR

•  Clang
–  C/C++/Objective-C compiler based on LLVM
–  significantly faster than gcc
–  better diagnostics
–  generated code (via LLVM) probably not as good on average

•  both are open source
–  used as basis of Apple's iOS compilers
–  used by Google

•  clang.llvm.org/doxygen

Word frequency count: AWK

 { for (i = 1; i <= NF; i++) x[$i]++ }!
END { for (i in x) print i, x[i] }!

Word frequency count: C++ STL

#include <iostream>
#include <map>
#include <string>

int main() {
 string temp;
 map<string, int> v;
 map<string, int>::const_iterator i;

 while (cin >> temp)
 v[temp]++;
 for (i = v.begin(); i != v.end(); ++i)
 cout << i->first << " " << i->second << "\n";
}

// for (i : v) ...

Further reading

•  http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

•  http://isocpp.org/

•  http://cppreference.com

What to use, what not to use?

•  Use
–  classes
–  const
–  const references
–  default constructors
–  C++ -style casts
–  bool
–  new / delete
–  C++ string type
–  range for
–  auto

•  Use sparingly / cautiously
–  overloaded functions
–  inheritance
–  virtual functions
–  exceptions
–  STL

•  Don't use
–  malloc / free
–  multiple inheritance
–  run time type identification
–  references if not const
–  overloaded operators (except

for arithmetic types)
–  default arguments (overload

functions instead)

