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Clustering  
 

With application to gene-expression 
profiling technology 


Thanks to Kevin Wayne, Matt Hibbs, & SMD for a few of the slides
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Measure the 
activity of 
people in 
various societal 
conditions


Measure the 
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cellular 
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From Genes to Proteins


Transcription:


DNA to mRNA




Translation:


mRNA to Proteins


DNA


mRNA


Protein


Ribosome
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Proteins are the “workhorses” of cells

•  To understand how cells work is to understand 

proteins




Understanding proteins and cells is key for 
finding disease treatments and cures

•  Modern drug development is centered on 

affecting proteins (receptors, hormones, etc.)


But… Proteins are hard to study directly, so 
microarrays look at the mRNA instead.


Proteins
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       Hybridization

Expression microarrays use the fact 
that complementary strands will 
hybridize (attach) to each other




9


Early cDNA microarray 
(18,000 clones)
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Microarray Methodology
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Microarray Methodology


Spot slide with 
known sequences
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Microarray Methodology


reference mRNA
 test mRNA


Spot slide with 
known sequences


Reference sample
 Test cells
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Microarray Methodology
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Microarray Methodology


Spot slide with 
known sequences
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for Hybridization
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Microarray Methodology
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Microarray Outputs


Measure amounts of green and 
red dye on each spot



Represent level of expression as a 
log ratio between these amounts


Raw Image from Spellman et al., 98
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Experiments

Extracting Data
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Some questions you can tackle with high-
throughput gene-expression


•  What is going on in the cell at a certain point 
in time?


§  what genes/pathways are active?


•  On a genomic level, what accounts for 
differences between phenotypes?


§  which genes/pathways are activated in 
stress response?


Large-scale study of biological processes




Introduction to Computer Science     •     Robert Sedgewick and Kevin Wayne     •    http://www.cs.Princeton.EDU/IntroCS 

Clustering


Outbreak of cholera deaths on map in 1850s.

Reference: Nina Mishra, HP Labs


History: London physicist John 
Snow plotted outbreak of 
cholera deaths on map in 
1850s.  Location indicated that 
clusters were around certain 
intersections with polluted 
wells; this exposed the 
problem and solution!
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What is clustering?

Reordering of vectors in a dataset so that 
similar patterns are next to each other


"Cluster-2" by Cluster-2.gif: hellispderivative work: Wgabrie (talk) - Cluster-2.gif. Licensed under 
Public Domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/
File:Cluster-2.svg#mediaviewer/File:Cluster-2.svg
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Why cluster microarray data?


•  Guilt-by-association: if unknown gene i is 
similar in expression to known gene j, maybe 
they are involved in the same/related 
pathway




•  Dimensionality reduction: datasets are too 

big to be able to get information out without 
reorganizing the data
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Botstein & Brown group
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From Eisen MB, et al, PNAS 1998 95(25):

14863-8 


Clustering Random vs Biological Data


Challenge – when is clustering “real”?
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K-means clustering


Define k = #clusters


Randomly initialize 
cluster centers


Assign each point 
to its closest center


Recalculate each center 
= median of its members


Until <stop condition>




K-means clustering


http://www.naftaliharris.com/blog/visualizing-
k-means-clustering/


DEMO




K-means clustering

Conceptually similar to Expectation-Maximization





EM iteration alternates between 2 two steps:





1. E step: Creates a function for the expectation of the log-likelihood 

evaluated using the current estimate for the parameters, and





2. M step: Computes parameters maximizing the expected log-

likelihood found on the E step.





These parameter-estimates are then used to determine the distribution 

of the latent variables in the next E step.
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•  Until the change in centers is less than 
<constant>


•  Until all genes get assigned to the same 
partition twice in a row


•  Until some minimal number of genes (e.g. 
90%) get assigned to the same partition 
twice in a row


K-means clustering


Stopping condition
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•  Have to set k ahead of time


•  Prefers clusters of approx. similar sizes


•  Each gene only belongs to 1 cluster


•  Genes assigned to clusters on the basis 
of all experiments


K-means clustering


Some issues
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Hierarchical clustering


•  Imposes hierarchical structure on all of 
the data


•  Easy visualization of similarities and 
differences between genes 
(experiments) and clusters of genes 
(experiments)
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Hierarchical clustering


Start with each pattern 
in its own cluster


Join patterns that are 
most similar


Compare joined patterns 
to all un-joined patterns


Until all patterns 
are merged into a 

single cluster
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering
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Dendrogram

•  Dendrogram.  Scientific visualization of hypothetical 

sequence of evolutionary events.

–  Leaves = genes.

–  Internal nodes = hypothetical ancestors.


Reference:  http://www.biostat.wisc.edu/bmi576/fall-2003/lecture13.pdf
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Dendrogram of Human tumors


Tumors in similar tissues cluster together.




Reference:  Botstein & Brown group


Gene 1


Gene n


gene over expressed

gene under expressed
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Hierarchical clustering: problems

•  Hard to define distinct clusters


•  Genes assigned to clusters on the basis of all 
experiments


•  Optimizing node ordering hard (finding the 
optimal solution is NP-hard)


•  Can be influenced by one strong cluster – a 
problem for gene expression b/c data in row 
space is often highly correlated
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Distance Metrics

•  Choice of distance measure is important for most clustering 

techniques

•  Linear measures: Euclidean distance, Pearson correlation

•  Non-parametric: Spearman correlation, Kendall’s tau
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Distance Metrics


Consider the following plot of 3 pairs of genes


No correlation
 Positive correlation
 Negative correlation




Distance Metrics

Pearson correlation (r) is a measure of the linear correlation 

(dependence) between two variables X and Y.


+1 ≤ r ≤ −1

+1 is total positive 

correlation

0 is no correlation

−1 is total negative 

correlation.




Distance Metrics


Anscombe’s quartet
11 datapoints




Mean (x) = 9

Var (x) = 11




Mean (y) = 7.50

Var (y) ~ 4.12




Cor (x, y) = 0.816




Linear regression line:


y = 3.00 + 0.500x


Anscombe, F. J. (1973). "Graphs in Statistical 
Analysis". American Statistician 27 (1): 17–21. 
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Distance Metrics

•  Choose your distance measure carefully after:


•  Exploring your data using sanity-checks

•  Looking at your data. There is no substitute for this.


•  Linear measures: Euclidean distance, Pearson correlation

•  Non-parametric: Spearman correlation, Kendall’s tau



