

6.4 MAXIMUM FLOW

- introduction
- Ford–Fulkerson algorithm
- maxflow-mincut theorem
- analysis of running time
- Java implementation
- applications

introduction Algorithms Java implementation ROBERT SEDGEWICK | KEVIN WAYNE applications http://algs4.cs.princeton.edu

6.4 MAXIMUM FLOW

- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- analysis of running time

Mincut problem

Input. An edge-weighted digraph, source vertex s, and target vertex t.

each edge has a positive capacity

Mincut problem

Def. A st-cut (cut) is a partition of the vertices into two disjoint sets, with s in one set A and t in the other set B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

Mincut problem

Def. A *st*-cut (cut) is a partition of the vertices into two disjoint sets, with s in one set A and t in the other set B.

Def. Its capacity is the sum of the capacities of the edges from *A* to *B*.

Maxflow: quiz 1

What is the capacity of the st-cut $\{A, E, F, G\}$?

- **A.** 34 (8 + 11 + 9 + 6)
- **B.** 45 (20 + 25)
- C. 78(20+8+11+9+6+24)
- **D.** I don't know.

Mincut problem

Def. A *st*-cut (cut) is a partition of the vertices into two disjoint sets, with *s* in one set *A* and *t* in the other set *B*.

Def. Its capacity is the sum of the capacities of the edges from A to B.

Minimum st-cut (mincut) problem. Find a cut of minimum capacity.

Mincut application (RAND 1950s)

"Free world" goal. Cut supplies (if cold war turns into real war).

rail network connecting Soviet Union with Eastern European countries (map declassified by Pentagon in 1999)

_

Potential mincut application (2010s)

Government-in-power's goal. Cut off communication to set of people.

Maxflow problem

Though maximum flow algorithms have a long history, revolutionary progress is still being made.

BY ANDREW V. GOLDBERG AND ROBERT E. TARJAN

Efficient Maximum Flow Algorithms

gorithms in more detail. We restrict ourselves to basic maximum flow algorithms and do not cover interesting special cases (such as undirected graphs, planar graphs, and bipartite matchings) or generalizations (such as minimum-cost and multi-commodity flow problems).

Before formally defining the maximum flow and the minimum cut problems, we give a simple example of each problem: For the maximum flow example, suppose we have a graph that represents an oil pipeline network from an oil well to an oil depot. Each are has a capacity, or maximum number of liters per second that can flow through the corresponding pipe. The goal is to find the maximum number of liters per second (maximum flow) that can be shipped from well to depot. For the minimum cut problem, we want to find the set of pipes of the smallest total capacity such that removing the pipes disconnects the oil well from the oil depot (minimum cut).

The maximum flow, minimum cut

Efficient Maximum Flow Algorithms by Andrew Goldberg and Bob Tarjan

http://vimeo.com/100774435

. .

Maxflow problem

Input. An edge-weighted digraph, source vertex s, and target vertex t.

each edge has a positive capacity

Maxflow problem

Def. An st-flow (flow) is an assignment of values to the edges such that:

- Capacity constraint: $0 \le \text{edge's flow} \le \text{edge's capacity}$.
- Local equilibrium: inflow = outflow at every vertex (except s and t).

. .

Maxflow problem

Def. An st-flow (flow) is an assignment of values to the edges such that:

- Capacity constraint: $0 \le \text{edge's flow} \le \text{edge's capacity}$.
- Local equilibrium: inflow = outflow at every vertex (except s and t).

Def. The value of a flow is the inflow at t.

we assume no edges point to s or from t

15

Maxflow application (Tolstoĭ 1930s)

Soviet Union goal. Maximize flow of supplies to Eastern Europe.

rail network connecting Soviet Union with Eastern European countries (map declassified by Pentagon in 1999)

Maxflow problem

Def. An st-flow (flow) is an assignment of values to the edges such that:

- Capacity constraint: $0 \le \text{edge's flow} \le \text{edge's capacity}$.
- Local equilibrium: inflow = outflow at every vertex (except s and t).

Def. The value of a flow is the inflow at t.

Maximum st-flow (maxflow) problem. Find a flow of maximum value.

Potential maxflow application (2010s)

"Free world" goal. Maximize flow of information to specified set of people.

facebook graph

Summary

Input. A weighted digraph, source vertex s, and target vertex t. Mincut problem. Find a cut of minimum capacity. Maxflow problem. Find a flow of maximum value.

Remarkable fact. These two problems are dual!

6.4 MAXIMUM FLOW introduction maxflow-mincut theorem Algorithms analysis of running time ROBERT SEDGEWICK | KEVIN WAYNE http://algs4.cs.princeton.edu

Ford–Fulkerson algorithm

Java implementation

· applications

Ford-Fulkerson algorithm

Initialization. Start with 0 flow.

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

1st augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from *s* to *t* such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

2nd augmenting path

23

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

4th augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from *s* to *t* such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

Idea: increase flow along augmenting paths

Termination. All paths from s to t are blocked by either a

- · Full forward edge.
- · Empty backward edge.

no more augmenting paths

Maxflow: quiz 2

Which is the augmenting path of highest bottleneck capacity?

$$A. A \to F \to G \to H$$

B.
$$A \to F \to B \to G \to H$$

C.
$$A \rightarrow F \rightarrow B \rightarrow G \rightarrow D \rightarrow H$$

D. *I don't know.*

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

6.4 MAXIMUM FLOW

introduction

Ford-Fulkerson algorithm

maxflow-mincut theorem

analysis of running time

Java implementation

applications

Ford-Fulkerson algorithm

Ford-Fulkerson algorithm

Start with 0 flow.

While there exists an augmenting path:

- find an augmenting path
- compute bottleneck capacity
- increase flow on that path by bottleneck capacity

Fundamental questions.

- · How to compute a mincut?
- · How to find an augmenting path?
- · If FF terminates, does it always compute a maxflow?
- Does FF always terminate? If so, after how many augmentations?

Relationship between flows and cuts

Def. The net flow across a cut (A, B) is the sum of the flows on its edges from A to B minus the sum of the flows on its edges from B to A.

net flow across cut = 5 + 10 + 10 = 25

Relationship between flows and cuts

Def. The net flow across a cut (A, B) is the sum of the flows on its edges from A to B minus the sum of the flows on its edges from B to A.

net flow across cut = 10 + 5 + 10 = 25

Relationship between flows and cuts

Def. The net flow across a cut (A, B) is the sum of the flows on its edges from A to B minus the sum of the flows on its edges from B to A.

net flow across cut = (10 + 10 + 5 + 10 + 0 + 0) - (5 + 5 + 0 + 0) = 25

Maxflow: quiz 3

Which is the net flow across the st-cut $\{A, E, F, G\}$?

- **A.** 11 (20 + 25 8 11 9 6)
- **B.** 26 (20 + 22 8 4 4)
- **C.** 42 (20 + 22)
- **D.** 45 (20 + 25)
- E. I don't know.

Relationship between flows and cuts

Flow-value lemma. Let f be any flow and let (A, B) be any cut. Then, the net flow across (A, B) equals the value of f.

Intuition. Conservation of flow.

Pf. By induction on the size of B.

- Base case: $B = \{ t \}$.
- Induction step: remains true by local equilibrium when moving any vertex from *A* to *B*.

Corollary. Outflow from s = inflow to t = value of flow.

Relationship between flows and cuts

flow-value lemma

Weak duality. Let f be any flow and let (A, B) be any cut. Then, the value of the flow \leq the capacity of the cut.

Pf. Value of flow $f = \text{net flow across cut } (A, B) \leq \text{capacity of cut } (A, B).$

flow bounded by capacity

capacity of cut = 30

Maxflow-mincut theorem

value of flow = 27

Maxflow-mincut theorem. Value of the maxflow = capacity of mincut. Augmenting path theorem. A flow f is a maxflow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f:

i. There exists a cut whose capacity equals the value of the flow f.

ii. f is a maxflow.

iii. There is no augmenting path with respect to f.

[$ii \Rightarrow iii$] We prove contrapositive: $\sim iii \Rightarrow \sim ii$.

- ullet Suppose that there is an augmenting path with respect to f.
- Can improve flow f by sending flow along this path.
- Thus, f is not a maxflow.

Maxflow-mincut theorem

Maxflow-mincut theorem. Value of the maxflow = capacity of mincut. Augmenting path theorem. A flow f is a maxflow iff no augmenting paths.

- Pf. The following three conditions are equivalent for any flow *f*:
- i. There exists a cut whose capacity equals the value of the flow f.
- ii. f is a maxflow.
- iii. There is no augmenting path with respect to f.

 $[i \Rightarrow ii]$

- Suppose that (A, B) is a cut with capacity equal to the value of f.
- Then, the value of any flow $f' \leq \text{capacity of } (A, B) = \text{value of } f$.
- Thus, f is a maxflow. \uparrow weak duality

 by assumption

Maxflow-mincut theorem

 $[iii \Rightarrow i]$

33

- ullet Let f be a flow with no augmenting paths.
- Let A be set of vertices connected to s by an undirected path with no full forward or empty backward edges
- By definition of cut A, s is in A.
- By definition of cut A and flow f, t is in B.
- Capacity of cut = net flow across cut

Computing a mincut from a maxflow

To compute mincut (A, B) from maxflow f:

- By augmenting path theorem, no augmenting paths with respect to f.
- Compute A = set of vertices connected to s by an undirected path with no full forward or empty backward edges.

6.4 MAXIMUM FLOW Introduction Ford-Fulkerson algorithm maxflow-mincut theorem analysis of running time Java implementation http://algs4.cs.princeton.edu

Ford-Fulkerson algorithm

Ford-Fulkerson algorithm

Start with 0 flow.

While there exists an augmenting path:

- find an augmenting path
- compute bottleneck capacity
- increase flow on that path by bottleneck capacity

Fundamental questions.

- How to compute a mincut? Easy. ✓
- · How to find an augmenting path? BFS works well.
- If FF terminates, does it always compute a maxflow? Yes.
- Does FF always terminate? If so, after how many augmentations?

yes, provided edge capacities are integers (or augmenting paths are chosen carefully)

requires clever analysis

Ford-Fulkerson algorithm with integer capacities

Important special case. Edge capacities are integers between 1 and U.

/ flow on each edge is an integer

Invariant. The flow is integral throughout Ford–Fulkerson.

Pf. [by induction]

- · Bottleneck capacity is an integer.
- Flow on an edge increases/decreases by bottleneck capacity.

Proposition. Number of augmentations \leq the value of the maxflow.

Pf. Each augmentation increases the value by at least 1.

critical for some applications (stay tuned)

Integrality theorem. There exists an integral maxflow.

Pf. Ford–Fulkerson terminates and maxflow that it finds is integer-valued.

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

42

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

2nd iteration s

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

• •

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

can be exponential in input size

Good news. This case is easily avoided. [use shortest/fattest path]

How to choose augmenting paths?

Use care when selecting augmenting paths.

- · Some choices lead to exponential algorithms.
- · Clever choices lead to polynomial algorithms.

augmenting path	number of paths	implementation
random path	$\leq E U$	randomized queue
DFS path	$\leq E U$	stack (DFS)
shortest path	$\leq \frac{1}{2} E V$	queue (BFS)
fattest path	$\leq E \ln(E \ U)$	priority queue

flow network with V vertices, E edges, and integer capacities between 1 and U

How to choose augmenting paths?

Choose augmenting paths with:

- · Shortest path: fewest number of edges.
- · Fattest path: max bottleneck capacity.

Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems

JACK EDMONDS

University of Waterloo, Waterloo, Ontario, Canada

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

RICHARD M. KARP

University of California, Berkeley, California

ABSTRACT. This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimum-cost flow problem. Upper bounds on the numbers of steps in these algorithms are derived, and are shown to compare favorably with upper bounds on the numbers of steps required by earlier algorithms.

Edmonds-Karp 1972 (USA)

Dokl. Akad. Nauk SSSR

Soviet Math. Dokl.

ALGORITHM FOR SOLUTION OF A PROBLEM OF MAXIMUM FLOW IN A NETWORK WITH POWER ESTIMATION

UDC 518.5

E. A. DINIC

Different variants of the formulation of the problem of maximal stationary flow in a network and its many applications are given in [1]. There also is given an algorithm solving the problem in the case where the initial data are integers (or, what is equivalent, commensuable). In the general case this algorithm requires preliminary rounding off of the initial data, i.e. only an approximate solution of the problem is possible. In this connection the rapidity of convergence of the algorithm is inverse ly proportional to the relative precision.

Dinic 1970 (Soviet Union)

50

6.4 MAXIMUM FLOW

introduction

Ford-Fulkerson algorithm

maxflow-mincut theoremanalysis of running time

Java implementation

applications

Flow network representation

Flow edge data type. Associate flow f_e and capacity c_e with edge $e = v \rightarrow w$.

Flow network data type. Must be able to process edge $e = v \rightarrow w$ in either direction: include e in adjacency lists of both v and w.

Residual (spare) capacity.

- Forward edge: residual capacity = $c_e f_e$.
- Backward edge: residual capacity = f_e .

Augment flow.

- Forward edge: add Δ .
- Backward edge: subtract Δ.

forward edge

backward edge

53

Flow edge API

public class FlowEdge						
	FlowEdge(int v, int w, double capacity)	create a flow edge v→w				
int	from()	vertex this edge points from				
int	to()	vertex this edge points to				
int	other(int v)	other endpoint				
double	capacity()	capacity of this edge				
double	flow()	flow in this edge				
double	residualCapacityTo(int v)	residual capacity toward v				
void	addResidualFlowTo(int v, double delta)	add delta flow toward v				

Flow network representation

Key point. Augmenting paths in original network are in one-to-one correspondence with directed paths in residual network.

5/

Flow edge: Java implementation

```
public class FlowEdge
    private final int v, w;
                                     // from and to
    private final double capacity;
                                    // capacity
                                                                           flow variable
    private double flow;
                                     // flow
                                                                           (mutable)
    public FlowEdge(int v, int w, double capacity)
      this.v
                     = v;
       this.w
                     = w;
       this.capacity = capacity;
    public int from()
                              { return v;
    public int to()
                              { return w;
    public double capacity() { return capacity; }
    public double flow()
                              { return flow;
    public int other(int vertex)
               (vertex == v) return w;
      else if (vertex == w) return v;
       else throw new IllegalArgumentException();
    public double residualCapacityTo(int vertex)
    public void addResidualFlowTo(int vertex, double delta)
```

Flow edge: Java implementation (continued)

```
public double residualCapacityTo(int vertex)
{
    if (vertex == v) return flow;
    else if (vertex == w) return capacity - flow;
    else throw new IllegalArgumentException();
}

public void addResidualFlowTo(int vertex, double delta)
{
    if (vertex == v) flow -= delta;
    else if (vertex == w) flow += delta;
    else throw new IllegalArgumentException();
}
forward edge
backward edge
```


57

Flow network: Java implementation

```
public class FlowNetwork
                                                    same as EdgeWeightedGraph,
    private final int V;
                                                       but adjacency lists of
    private Bag<FlowEdge>[] adj;
                                                     FlowEdges instead of Edges
    public FlowNetwork(int V)
       this.V = V;
       adj = (Bag<FlowEdge>[]) new Bag[V];
       for (int v = 0; v < V; v++)
          adj[v] = new Bag<FlowEdge>();
    public void addEdge(FlowEdge e)
       int v = e.from();
       int w = e.to();
       adj[v].add(e);
                                                     add forward edge
       adj[w].add(e);
                                                     add backward edge
    public Iterable<FlowEdge> adj(int v)
    { return adj[v]; }
```

Flow network API

```
public class FlowNetwork
                       FlowNetwork(int V)
                                                   create an empty flow network with V vertices
                       FlowNetwork(In in)
                                                      construct flow network input stream
                 void addEdge(FlowEdge e)
                                                      add flow edge e to this flow network
Iterable<FlowEdge> adj(int v)
                                                 forward and backward edges incident to/from v
Iterable<FlowEdge> edges()
                                                         all edges in this flow network
                  int V()
                                                              number of vertices
                  int E()
                                                              number of edges
              String toString()
                                                             string representation
```

Conventions. Allow self-loops and parallel edges.

Flow network: adjacency-lists representation

Maintain vertex-indexed array of FlowEdge lists (use Bag abstraction).

Note. Adjacency list includes edges with 0 residual capacity. (residual network is represented implicitly)

Finding a shortest augmenting path (cf. breadth-first search)

```
private boolean hasAugmentingPath(FlowNetwork G, int s, int t)
    edgeTo = new FlowEdge[G.V()];
    marked = new boolean[G.V()];
    Queue<Integer> queue = new Queue<Integer>();
    queue.enqueue(s);
                                              can stop BFS as soon as
    marked[s] = true;
                                           augmenting path is discovered
    while (!queue.isEmpty() && !marked[t])
        int v = queue.dequeue();
        for (FlowEdge e : G.adj(v))
                                               found path from s to w
                                               in the residual network?
            int w = e.other(v);
            if (!marked[w] && (e.residualCapacityTo(w) > 0) )
                edgeTo[w] = e;
                                            save last edge on path to w;
               marked[w] = true;
                                           mark w;
                queue.enqueue(w);
                                           add w to the queue
                          is t reachable from s in residual network?
    return marked[t];
```

6.4 MAXIMUM FLOW Introduction Ford-Fulkerson algorithm maxflow-mincut theorem

analysis of running time

Java implementation

Robert Sedgewick | Kevin Wayne

Algorithms

http://algs4.cs.princeton.edu

applications

Ford-Fulkerson: Java implementation

```
public class FordFulkerson
   private boolean[] marked;
                              // true if s->v path in residual network
  private FlowEdge[] edgeTo; // last edge on s->v path
  private double value;
                              // value of flow
  public FordFulkerson(FlowNetwork G, int s, int t)
                                           compute edgeTo[] and marked[]
     value = 0.0;
     while (hasAugmentingPath(G, s, t))
                                                             compute
        double bottle = Double.POSITIVE_INFINITY;
                                                              bottleneck capacity
        for (int v = t; v != s; v = edgeTo[v].other(v))
           bottle = Math.min(bottle, edgeTo[v].residualCapacityTo(v));
        for (int v = t; v != s; v = edgeTo[v].other(v))
            edgeTo[v].addResidualFlowTo(v, bottle);
                                                           augment flow
         value += bottle; ← update value of flow
  private boolean hasAugmentingPath(FlowNetwork G, int s, int t)
   { /* See previous slide. */ }
  public double value()
   { return value; }
  public boolean inCut(int v) ← is v reachable from s in residual network?
   { return marked[v]; }
```

Maxflow and mincut applications

Maxflow/mincut is a widely applicable problem-solving model.

- Data mining.
- Open-pit mining.
- · Bipartite matching.
- · Network reliability.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Distributed computing.
- · Security of statistical data.
- · Egalitarian stable matching.
- Multi-camera scene reconstruction.
- · Sensor placement for homeland security.
- Many, many, more.

liver and hepatic vascularization segmentation

Bipartite matching problem

Problem. Given N people and N tasks, assign the tasks to people so that:

- Every task is assigned to a qualified person.
- Every person is assigned to exactly one task.

Bipartite matching problem

Problem. Given a bipartite graph, find a perfect matching.

1-9 2-6 3-8 4-10 5-7

65

66

Network flow formulation of bipartite matching

- Create s, t, one vertex for each task, and one vertex for each person.
- Add edge from s to each task (of capacity 1).
- Add edge from each person to t (of capacity 1).
- Add edge from task to qualified person (of infinite capacity).

Network flow formulation of bipartite matching

1-1 correspondence between perfect matchings in bipartite graph and integer-valued maxflows of value N in flow network.

What the mincut tells us

Goal. When no perfect matching, explain why.

$$S = \{ 2, 4, 5 \}$$

 $T = \{ 7, 10 \}$

tasks in S can be matched only to people in T | S | > | T |

no perfect matching exists

71

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

i		team	wins	losses	to play	ATL	PHI	NYM	WAS
0	A	Atlanta	83	71	8	-	1	6	1
1	Phillips	Philly	80	79	3	1	-	0	2
2	Mets	New York	78	78	6	6	0	-	0
3		Washington	77	82	3	1	2	0	-

Washington is mathematically eliminated.

- Washington finishes with ≤ 80 wins.
- Atlanta already has 83 wins.

What the mincut tells us

Mincut. Consider mincut (A, B).

- Let S =tasks on s side of cut.
- Let T = people on s side of cut.
- Fact: |S| > |T|; tasks in S can be matched only to people in T.

Bottom line. When no perfect matching, mincut explains why.

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

i		team	wins	losses	to play	ATL	PHI	NYM	WAS
0	A	Atlanta	83	71	8	-	1	6	1
1	Phillips	Philly	80	79	3	1	-	0	2
2	Mets	New York	78	78	6	6	0	-	0
3	0	Washington	77	82	3	1	2	0	-

Philadelphia is mathematically eliminated.

- Philadelphia finishes with ≤ 83 wins.
- Either New York or Atlanta will finish with ≥ 84 wins.

Observation. Answer depends not only on how many games already won and left to play, but on whom they're against.

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

i		team	wins	losses	to play	NYY	BAL	BOS	TOR	DET
0	Qualities of	New York	75	59	28	_	3	8	7	3
1		Baltimore	71	63	28	3	-	2	7	4
2		Boston	69	66	27	8	2	-	0	0
3		Toronto	63	72	27	7	7	0	-	0
4		Detroit	49	86	27	3	4	0	0	-

AL East (August 30, 1996)

Detroit is mathematically eliminated.

- Detroit finishes with ≤ 76 wins.
- Wins for $R = \{ NYY, BAL, BOS, TOR \} = 278.$
- Remaining games among { NYY, BAL, BOS, TOR } = 3 + 8 + 7 + 2 + 7 = 27.
- Average team in R wins 305/4 = 76.25 games.

73

Maximum flow algorithms: theory

(Yet another) holy grail for theoretical computer scientists.

year	method	worst case	discovered by
1951	simplex	$E^3 U$	Dantzig
1955	augmenting path	$E^2 U$	Ford–Fulkerson
1970	shortest augmenting path	E^3	Dinitz, Edmonds-Karp
1970	fattest augmenting path	$E^2 \log E \log(EU)$	Dinitz, Edmonds-Karp
1977	blocking flow	$E^{5/2}$	Cherkasky
1978	blocking flow	$E^{7/3}$	Galil
1983	dynamic trees	$E^2 \log E$	Sleator-Tarjan
1985	capacity scaling	$E^2 \log U$	Gabow
1997	length function	$E^{3/2}\log E\log U$	Goldberg-Rao
2012	compact network	$E^2/\log E$	Orlin
?	?	E	?

maxflow algorithms for sparse networks with E edges, integer capacities between 1 and U

Baseball elimination problem: maxflow formulation

Intuition. Remaining games flow from s to t.

Fact. Team 4 not eliminated iff all edges pointing from s are full in maxflow.

Maximum flow algorithms: practice

Warning. Worst-case order-of-growth is generally not useful for predicting or comparing maxflow algorithm performance in practice.

Best in practice. Push-relabel method with gap relabeling: $E^{3/2}$.

Computer vision. Specialized algorithms for problems with special structure.

Summary

Mincut problem. Find an *st*-cut of minimum capacity. Maxflow problem. Find an *st*-flow of maximum value. Duality. Value of the maxflow = capacity of mincut.

Proven successful approaches.

- Ford-Fulkerson (various augmenting-path strategies).
- Preflow-push (various versions).

Open research challenges.

- Practice: solve real-world maxflow/mincut problems in linear time.
- Theory: prove it for worst-case inputs.
- Still much to be learned!

