

6.4 MAXIMUM FLOW

- introduction

- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- analysis of running time
- Java implementation
- applications

Mincut problem

Input. An edge-weighted digraph, source vertex s, and target vertex t.

Algorithms

Robert Sedgewick \mid Kevin $\mathrm{Wayne}^{\text {aye }}$
http://algs4.cs.princeton.edu

6.4 Maximum FLow

- introduction

- Ford-Fulkerson algorithm
maxflow-mincut theorem
- analysis of running time
- Java implementation
- applications

Mincut problem

Def. A st-cut (cut) is a partition of the vertices into two disjoint sets, with s in one set A and t in the other set B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

Mincut problem

Def. A st-cut (cut) is a partition of the vertices into two disjoint sets, with s in one set A and t in the other set B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

Maxflow: quiz 1

What is the capacity of the st-cut $\{A, E, F, G\}$?
A. $34(8+11+9+6)$
B. $45(20+25)$
C. $78(20+8+11+9+6+24)$
D. I don't know.

Mincut problem

Def. A st-cut (cut) is a partition of the vertices into two disjoint sets, with s in one set A and t in the other set B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

Minimum st-cut (mincut) problem. Find a cut of minimum capacity.

Mincut application (RAND 1950s)

"Free world" goal. Cut supplies (if cold war turns into real war).

rail network connecting Soviet Union with Eastern European countries (map declassified by Pentagon in 1999)

facebook

Though maximum flow algorithms have

 a long history, revolutionary progress is still being made.BY ANDREW V. GOLDBERG AND ROBERT E. TARJAN

Efficient Maximum Flow Algorithms

gorithms in more detail. We restrict ourselves to basic maximum flow algorithms and do not cover interest-
ing special cases (such as undirected ing special cases (such as undirected
graphs, planar graphs, and bipartite graphs, planar graphs, and bipartute
matchings) or generalizations (such as minimumecost and multi-commodity flow problems).
Before formally defining the maxi-
mum flow and the minimy mum flow and the minimum cut prob-
lems, we give lems, we give a simple example of each problem: For the maximum flow
example, suppose we have a graph that example, suppose we have a graph that
represents an oil pipeline network from an oil well to an oil depot. Each are has a capacity, or maximum number of liters per second that can flow through the corresponding pipe. The
goal is to find the maximum number of liters per second (maximum flow) that can be shipped from well to depot. For the minimum cut problem, we want to find the set of pipes of the smallest
total capacity such that removing the total capacity such that removing the
pipes disconnects the oil well from the pipes disconnects the oil
oil depot (minimum cut).
The maximum flow, minimum cut

Efficient Maximum Flow Algorithms by Andrew Goldberg and Bob Tarjan
http://vimeo.com/100774435

Maxflow problem

Def. An st-flow (flow) is an assignment of values to the edges such that:

- Capacity constraint: $0 \leq$ edge's flow \leq edge's capacity.
- Local equilibrium: inflow = outflow at every vertex (except s and t).

Maxflow problem

Def. An st-flow (flow) is an assignment of values to the edges such that:

- Capacity constraint: $0 \leq e d g e ' s$ flow \leq edge's capacity.
- Local equilibrium: inflow = outflow at every vertex (except s and t).

Def. The value of a flow is the inflow at t.
we assume no edges point to s or from t

Maxflow application (Tolstoǐ 1930s)

Soviet Union goal. Maximize flow of supplies to Eastern Europe.

rail network connecting Soviet Union with Eastern European countries (map declassified by Pentagon in 1999)

Maxflow problem

Def. An st-flow (flow) is an assignment of values to the edges such that:

- Capacity constraint: $0 \leq$ edge's flow \leq edge's capacity.
- Local equilibrium: inflow = outflow at every vertex (except s and t).

Def. The value of a flow is the inflow at t.

Maximum st-flow (maxflow) problem. Find a flow of maximum value.

14

Potential maxflow application (2010s)

"Free world" goal. Maximize flow of information to specified set of people.

facebook graph

Summary

Input. A weighted digraph, source vertex s, and target vertex t.
Mincut problem. Find a cut of minimum capacity.
Maxflow problem. Find a flow of maximum value.

Remarkable fact. These two problems are dual!

Ford-Fulkerson algorithm

Initialization. Start with 0 flow.

6.4 Maximum Flow

- infroduction

- Ford-Fulkerson algorithm
maxflow-mincut theorem
- analysis of running time
- Java implementation
\rightarrow applications.

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$1^{\text {st }}$ augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$2^{\text {nd }}$ augmenting path

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).
$3^{\text {rd }}$ augmenting path

Idea: increase flow along augmenting paths

Termination. All paths from s to t are blocked by either a

- Full forward edge.
- Empty backward edge.
no more augmenting paths

Maxflow: quiz 2

Which is the augmenting path of highest bottleneck capacity?
A. $A \rightarrow F \rightarrow G \rightarrow H$
B. $A \rightarrow F \rightarrow B \rightarrow G \rightarrow H$
C. $A \rightarrow F \rightarrow B \rightarrow G \rightarrow D \rightarrow H$
D. I don't know.

Ford-Fulkerson algorithm

Ford-Fulkerson algorithm

Start with 0 flow.

While there exists an augmenting path:

- find an augmenting path
compute bottleneck capacity
- increase flow on that path by bottleneck capacity

Fundamental questions.

- How to compute a mincut?
- How to find an augmenting path?
- If FF terminates, does it always compute a maxflow?
- Does FF always terminate? If so, after how many augmentations?

Relationship between flows and cuts

Def. The net flow across a cut (A, B) is the sum of the flows on its edges from A to B minus the sum of the flows on its edges from B to A.

6.4 Maximum Flow

Introduction

- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- analysis of ruaning time
- Java implementation
\rightarrow applications.
net flow across cut $=5+10+10=25$

Relationship between flows and cuts

Def. The net flow across a cut (A, B) is the sum of the flows on its edges from A to B minus the sum of the flows on its edges from B to A.
net flow across cut $=10+5+10=25$

Maxflow: quiz 3

Which is the net flow across the st-cut $\{A, E, F, G\}$?
A. $11(20+25-8-11-9-6)$
B. $26(20+22-8-4-4)$
C. $42(20+22)$
D. $45(20+25)$
E. I don't know.

Relationship between flows and cuts

Def. The net flow across a cut (A, B) is the sum of the flows on its edges from A to B minus the sum of the flows on its edges from B to A.
net flow across cut $=(10+10+5+10+0+0)-(5+5+0+0)=25$

Relationship between flows and cuts

Flow-value lemma. Let f be any flow and let (A, B) be any cut. Then, the net flow across (A, B) equals the value of f.

Intuition. Conservation of flow.

Pf. By induction on the size of B.

- Base case: $B=\{t\}$.
- Induction step: remains true by local equilibrium when moving any vertex from A to B.

Corollary. Outflow from $s=$ inflow to $t=$ value of flow.

Relationship between flows and cuts

Weak duality. Let f be any flow and let (A, B) be any cut.
Then, the value of the flow \leq the capacity of the cut.

Pf. Value of flow $f=$ net flow across cut $(A, B) \leq$ capacity of cut (A, B).

$$
\uparrow_{\text {low-value lemma }}^{\uparrow}
$$

$$
\uparrow_{\text {ow bounded by capacity }}^{\uparrow}
$$

value of flow $=27$

capacity of cut $=30$

Maxflow-mincut theorem

Maxflow-mincut theorem. Value of the maxflow = capacity of mincut Augmenting path theorem. A flow f is a maxflow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f :
i. There exists a cut whose capacity equals the value of the flow f.
ii. f is a maxflow.
iii. There is no augmenting path with respect to f.

[$\mathrm{i} \Rightarrow \mathrm{ii}$]

- Suppose that (A, B) is a cut with capacity equal to the value of f.
- Then, the value of any flow $f^{\prime} \leq$ capacity of $(A, B)=$ value of f.
- Thus, f is a maxflow.
weak duality
by assumption

Maxflow-mincut theorem

Maxflow-mincut theorem. Value of the maxflow = capacity of mincut. Augmenting path theorem. A flow f is a maxflow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f :
i. There exists a cut whose capacity equals the value of the flow f.
ii. f is a maxflow.
iii. There is no augmenting path with respect to f.
[ii \Rightarrow iii] We prove contrapositive: $\sim \mathrm{iii} \Rightarrow \sim \mathrm{ii}$.

- Suppose that there is an augmenting path with respect to f.
- Can improve flow f by sending flow along this path.
- Thus, f is not a maxflow.

Maxflow-mincut theorem

[iii \Rightarrow i]

- Let f be a flow with no augmenting paths.
- Let A be set of vertices connected to s by an undirected path with no full forward or empty backward edges
- By definition of cut A, s is in A.
- By definition of cut A and flow f, t is in B.

Computing a mincut from a maxflow

To compute mincut (A, B) from maxflow f :

- By augmenting path theorem, no augmenting paths with respect to f.
- Compute $A=$ set of vertices connected to s by an undirected path with no full forward or empty backward edges.

Ford-Fulkerson algorithm

Ford-Fulkerson algorithm
Start with 0 flow.
While there exists an augmenting path:

- find an augmenting path
- compute bottleneck capacity
- increase flow on that path by bottleneck capacity

Fundamental questions.

- How to compute a mincut? Easy. v
- How to find an augmenting path? BFS works well.
- If FF terminates, does it always compute a maxflow? Yes.
- Does FF always terminate? If so, after how many augmentations?

```
\
yes, provided edge capacities are integers
(or augmenting paths are chosen carefully)
```


6.4 Maximum Flow

```
- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
```

- analysis of running time
- Java implementation
- applications

Ford-Fulkerson algorithm with integer capacities

Important special case. Edge capacities are integers between 1 and U.

> flow on each edge is an integer

Invariant. The flow is integral throughout Ford-Fulkerson.
Pf. [by induction]

- Bottleneck capacity is an integer.
- Flow on an edge increases/decreases by bottleneck capacity.

Proposition. Number of augmentations \leq the value of the maxflow. Pf. Each augmentation increases the value by at least 1.
critical for some applications (stay tuned)
Integrality theorem. There exists an integral maxflow.
Pf. Ford-Fulkerson terminates and maxflow that it finds is integer-valued.

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.
can be exponential in input size
Good news. This case is easily avoided. [use shortest/fattest path]

How to choose augmenting paths?

Choose augmenting paths with:

- Shortest path: fewest number of edges.
- Fattest path: max bottleneck capacity.

```
Theoretical Improvements in Algorithmic Efficienc
for Network Flow Problems
```


ack rimonds

```
\begin{tabular}{c} 
Uniwer \\
and \\
\hline
\end{tabular}
\({ }_{\text {Richard m. кarp }}^{\text {and }}\)
```


Edmonds-Karp 1972 (USA)

How to choose augmenting paths?

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.

augmenting path	number of paths	implementation
random path	$\leq E U$	randomized queue
DFS path	$\leq E U$	stack (DFS)
shortest path	$\leq 1 / 2 E V$	queue (BFS)
fattest path	$\leq E \ln (E U)$	priority queue

flow network with V vertices, E edges, and integer capacities between 1 and U

Dinic 1970 (Soviet Union)

Dokl. Akad. Nauk SSSR Tom 194 (1970), No.	Soviet Math. Dokl.
algorithm for solu	IN A NETWORK WITH
woctis.	
Differen vaians of the	
its	
	yan
1 yp propritiona to the ereative	

6.4 Maximum Flow

```
-
```

- Ford-Fulkerson algorithm
- maxflow-mincut theorem

Danalysis of rumning time

- Java implementation

- applicatións,

Flow network representation

Flow edge data type. Associate flow f_{e} and capacity c_{e} with edge $e=v \rightarrow w$.

Flow network data type. Must be able to process edge $e=v \rightarrow w$ in either direction: include e in adjacency lists of both v and w.

Residual (spare) capacity.

- Forward edge: residual capacity $=c_{e}-f_{e}$.
- Backward edge: residual capacity $=f_{e}$

Augment flow.

- Forward edge: add Δ.
- Backward edge: subtract Δ
 backward edge

Flow edge AP

public class	FlowEdge	
	FlowEdge(int v, int w, double capacity)	create a flow edge $\nu \rightarrow w$
int	from()	vertex this edge points from
int	to()	vertex this edge points to
int	other(int v)	other endpoint
double	capacity ()	capacity of this edge
double	flow()	flow in this edge
double	residualCapacityTo(int v)	residual capacity towardv
void	addResidualFlowTo(int v, double delta)	add delta flow towardv

Flow network representation

Residual network. A useful view of a flow network.

Key point. Augmenting paths in original network are in one-to-one correspondence with directed paths in residual network.

Flow edge: Java implementation

Flow edge: Java implementation (continued)

```
public double residualCapacityTo(int vertex)
{
    if (vertex == v) return flow;
    else throw new IllegalArgumentException();
```

\}
public void addResidualFlowTo(int vertex, double delta) \{

$$
\begin{aligned}
& \text { if (vertex }==\text { v) flow }=\text { delta; } \\
& \text { else if (vertex }==\text { w) flow += delta; } \\
& \text { else throw new IllegalArgumentException(); }
\end{aligned}
$$

\}

Flow network API

public class FlowNetwork		
	FlowNetwork(int V)	create an empty flow network with V vertices
	FlowNetwork (In in)	construct flow network input stream
void	addEdge(FlowEdge e)	add flow edge e to this flow network
Iterable<FlowEdge>	$\operatorname{adj}($ int v)	forward and backward edges incident to/fromv
Iterable<FlowEdge>	edges()	all edges in this flow network
int	V ()	number of vertices
int	E()	number of edges
String	toString ()	string representation

Conventions. Allow self-loops and parallel edges.

Flow network: adjacency-lists representation

Maintain vertex-indexed array of FlowEdge lists (use Bag abstraction)

Note. Adjacency list includes edges with 0 residual capacity. (residual network is represented implicitly)

Finding a shortest augmenting path (cf. breadth-first search)

```
private boolean hasAugmentingPath(FlowNetwork G, int s, int t)
{
    edgeTo = new FlowEdge[G.V()];
    marked = new boolean[G.V()];
    Queue<Integer> queue = new Queue<Integer>();
    queue.enqueue(s);
    marked[s] = true;
    while (!queue.isEmpty() && !marked[t])
    {
        int v = queue.dequeue();
        for (FlowEdge e : G.adj(v))
        { int w = e.other(v);
            if (!marked[w] && (e.residualCapacityTo(w) > 0))
            {
                    marked[w] = true;
                    queue.enqueue(w);
                                \longleftarrowma
                    mark w;
                    add w to the queue
                }
    }
    return marked[t]; \longleftarrow< is t reachable from s in residual network?
}
```


Robert Sedgewick \| Kevin Wayne
http://algs 4.cs.princeton.edu

6.4 MAximum FLow

- introduction
- Ford-Fulkerson algorithm
maxflow-mincut theorem
panalysis ofrunning time-
- Java implementation
- applications

Ford-Fulkerson: Java implementation

```
public class FordFulkerson
{ private boolean[] marked
    private boolean[] marked; // true if s->v path in residual network
    private FlowEdge[] edgeTo; // last edge on s->v path
    private double value;
        pubTic FordFulkerson(FlowNetwork G, int s, int t)
        lacture compute edgeTo[] and marked[]
        {hile (hasAugmentingPath(G, s, t)) compute
            double bottle = Double.POSITIVE_INFINITY;
            lint v = t; v != s; v = edgeTo[v].other(v))
            for (int v = t; v != s; v = edgeTo[v].other(v))
                edgeTo[v].addResidualFlowTo(v, bottle);
                value += bottle; \longleftarrow update value of flow
                                    augment flow
        }
    }
    private boolean hasAugmentingPath(FlowNetwork G, int s, int t)
    { /* See previous slide.*/ }
    public double value()
    return value; }
    public boolean inCut(int v) \longleftarrow
    { return marked[v]; }
}
```


Maxflow and mincut applications

Maxflow/mincut is a widely applicable problem-solving model.

- Data mining.
- Open-pit mining.
- Bipartite matching.
- Network reliability.
- Baseball elimination.
- Image segmentation.
- Network connectivity.

- Distributed computing
- Security of statistical data.
- Egalitarian stable matching.
- Multi-camera scene reconstruction.
- Sensor placement for homeland security.
- Many, many, more.

Bipartite matching problem

Problem. Given N people and N tasks, assign the tasks to people so that:

- Every task is assigned to a qualified person.
- Every person is assigned to exactly one task.

Network flow formulation of bipartite matching

1-1 correspondence between perfect matchings in bipartite graph and integer-valued maxflows of value N in flow network.

What the mincut tells us

Goal. When no perfect matching, explain why.

$S=\{2,4,5\}$
$\mathrm{T}=\{7,10\}$
tasks in S
can be matched
only to
people in T
$|S|>|T|$

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

i	team	wins	losses	to play	ATL	PHI	NYM	WAS	
0	4	Atlanta	83	71	8	-	1	6	1
1	2	Philly	80	79	3	1	-	0	2
2		New York	78	78	6	6	0	-	0
3		Washington	77	82	3	1	2	0	-

Washington is mathematically eliminated.

- Washington finishes with ≤ 80 wins.
- Atlanta already has 83 wins.

What the mincut tells us

Mincut. Consider mincut (A, B).

- Let $S=$ tasks on s side of cut.
- Let $T=$ people on s side of cut.
- Fact: $|S|>|T|$; tasks in S can be matched only to people in T.

Bottom line. When no perfect matching, mincut explains why.

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

i	team	wins	losses	to play	ATL	PHI	NYM	WAS	
0	Atlanta	83	71	8	-	1	6	1	
1	Philly	80	79	3	1	-	0	2	
2		Phen	New York	78	78	6	6	0	-
3	Washington	77	82	3	1	2	0	-	

Philadelphia is mathematically eliminated.

- Philadelphia finishes with ≤ 83 wins.
- Either New York or Atlanta will finish with ≥ 84 wins.

Observation. Answer depends not only on how many games already won and left to play, but on whom they're against.

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

i		team	wins	losses	to play	NYY	BAL	BOS	TOR	DET
0	(4, 20)	New York	75	59	28	-	3	8	7	3
1	(4)	Baltimore	71	63	28	3	-	2	7	4
2		Boston	69	66	27	8	2	-	0	0
3	$\frac{8}{500}$	Toronto	63	72	27	7	7	0	-	0
4		Detroit	49	86	27	3	4	0	0	-

Detroit is mathematically eliminated.

- Detroit finishes with ≤ 76 wins.
- Wins for $R=\{$ NYY, BAL, BOS, TOR $\}=278$.
- Remaining games among $\{$ NYY, BAL, BOS, TOR $\}=3+8+7+2+7=27$.
- Average team in R wins $305 / 4=76.25$ games.

Maximum flow algorithms: theory

(Yet another) holy grail for theoretical computer scientists.

year	method	worst case	discovered by
1951	simplex	$E^{3} U$	Dantzig
1955	augmenting path	$E^{2} U$	Ford-Fulkerson
1970	shortest augmenting path	E^{3}	Dinitz, Edmonds-Karp
1970	fattest augmenting path	$E^{2} \log E \log (E U)$	Dinitz, Edmonds-Karp
1977	blocking flow	$E^{5 / 2}$	Cherkasky
1978	blocking flow	$E^{7 / 3}$	Galil
1983	dynamic trees	$E^{2} \log E$	Sleator-Tarjan
1985	capacity scaling	$E^{2} \log U$	Gabow
1997	length function	$E^{3 / 2} \log E \log U$	Goldberg-Rao
2012	compact network	$E^{2} / \log E$	Orlin
?	?	E	?
maxflow algorithms for sparse networks with E edges, integer capacities between 1 and U			

Baseball elimination problem: maxflow formulation

Intuition. Remaining games flow from s to t.

Fact. Team 4 not eliminated iff all edges pointing from s are full in maxflow.

Maximum flow algorithms: practice

Warning. Worst-case order-of-growth is generally not useful for predicting or comparing maxflow algorithm performance in practice.

Best in practice. Push-relabel method with gap relabeling: $E^{3 / 2}$.

Computer vision. Specialized algorithms for problems with special structure.

On Implementing Push-Relabel Method for the Maximum Flow Problem

Boris V. Cherkassky' and Andrew V. Goldberg ${ }^{2}$

 also exxibita family of problems for which hhe runing tim

Summary

Mincut problem. Find an st-cut of minimum capacity. Maxflow problem. Find an st-flow of maximum value
Duality. Value of the maxflow = capacity of mincut.

Proven successful approaches.

- Ford-Fulkerson (various augmenting-path strategies).
- Preflow-push (various versions).

Open research challenges.

- Practice: solve real-world maxflow/mincut problems in linear time.
- Theory: prove it for worst-case inputs.
- Still much to be learned!

