Robert Sedgewick | Kevin Wayne

4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components

4.2 Directed Graphs

- introduction

Algorithms

Robert Sedgewick | Kevin Wayne
http://algs4.cs.princeton.edu

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

Road network

Vertex $=$ intersection; edge $=$ one-way street.

Political blogosphere graph

Vertex $=$ political blog; edge $=$ link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Uber taxi graph

Vertex = taxi pickup; edge = taxi ride.

http:/ /blog.uber.com/2012/01/09/uberdata-san-franciscomics/

Combinational circuit

Vertex = logical gate; edge = wire.

WordNet graph

Vertex $=$ synset; edge $=$ hypernym relationship.

Digraph applications

digraph	vertex	directed edge
transportation	street intersection	one-way street
web	web page	hyperlink
food web	species	predator-prey relationship
WordNet	synset	hypernym
scheduling	task	precedence constraint
financial	person	transaction
cell phone	person	placed call
infectious disease	board position	infection
game	journal article	legal move
citation	object	citation
object graph	class	pointer
inheritance hierarchy	code block	inherits from
control flow		

Some digraph problems

problem

$s \rightarrow t$ path
shortest $s \rightarrow$ t path

directed cycle

topological sort
strong connectivity
transitive closure

PageRank

Is there a path from s to t ?

What is the shortest path from s to t ?

Is there a directed cycle in the graph?

Can the digraph be drawn so that all edges point upwards?

Is there a directed path between all pairs of vertices?

For which vertices v and w is there a directed path from v to w ?

What is the importance of a web page ?

4.2 Directed Graphs

Vinsroduction
 - digraph API

Algorithms

Robert Sedgewick I Kevin Wayne

- digraph search

- topological sort
- strong components
http://algs4.cs.princeton.edu

Digraph API

Almost identical to Graph API.

public class Digraph

	Digraph(int V)	create an empty digraph with V vertices
	Digraph(In in)	create a digraph from input stream
void	addEdge(int v, int w)	add a directed edge $v \rightarrow w$
Iterable<Integer>	adj(int v)	vertices adjacent from v
int	V ()	number of vertices
int	E()	number of edges
Digraph	reverse()	reverse of this digraph
String	toString()	string representation

Digraph representation: adjacency lists

Maintain vertex-indexed array of lists.

Directed graphs: quiz 1

Which is order of growth of running time of the following code fragment if the digraph uses the adjacency-lists representation?

E. I don't know.

```
for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "->" + w);
```

 prints each edge exactly once

Digraph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent from v.
- Real-world digraphs tend to be sparse.
huge number of vertices,
small average vertex outdegree

representation	space	insert edge from \vee to w	edge from \vee to $w ?$	iterate over vertices adjacent from $v ?$
list of edges	E	1	E	E
adjacency matrix	V^{2}	$1 \dagger$	1	V
adjacency lists	$E+V$	1	outdegree(v)	outdegree (v)

† disallows parallel edges

Adjacency-lists graph representation (review): Java implementation

```
public class Graph
{
    private final int V;
    private final Bag<Integer>[] adj;
    public Graph(int V)
    {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < v; v++)
        adj[v] = new Bag<Integer>();
    }
    public void addEdge(int v, int w)
    {
        adj[v].add(w);
        adj[w].add(v);
    }
    public Iterable<Integer> adj(int v)
    { return adj[v]; }
}
```


Adjacency-lists digraph representation: Java implementation

```
public class Digraph
{
    private final int V;
    private final Bag<Integer>[] adj;
    public Digraph(int V)
    {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < v; v++)
        adj[v] = new Bag<Integer>();
    }
    public void addEdge(int v, int w)
    {
        adj[v].add(w);
    }
    public Iterable<Integer> adj(int v)
    { return adj[v]; }
}
```


4.2 Directed Graphs

Vinsroduction

Algorithms

Robert Sedgewick I Kevin Wayne
http://algs4.cs.princeton.edu

Reachability

Problem. Find all vertices reachable from s along a directed path.

Depth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)
Mark vertex v .
Recursively visit all unmarked
vertices \mathbf{w} adjacent from \mathbf{v}.

Depth-first search demo

To visit a vertex v :

- Mark vertex v as visited.

$4 \rightarrow 2$
$2 \rightarrow 3$
$3 \rightarrow 2$
- Recursively visit all unmarked vertices adjacent from v.

$6 \rightarrow 0$
$0 \rightarrow 1$
$2 \rightarrow 0$
$11 \rightarrow 12$
$12 \rightarrow 9$
$9 \rightarrow 10$
$9 \rightarrow 11$
$8 \rightarrow 9$
$10 \rightarrow 12$
$11 \rightarrow 4$
$4 \rightarrow 3$
$3 \rightarrow 5$
$6 \rightarrow 8$
$8 \rightarrow 6$
$5 \rightarrow 4$
$0 \rightarrow 5$
$6 \rightarrow 4$
a directed graph

Depth-first search demo

To visit a vertex v :

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent from v.

reachable from 0

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one. [substitute Digraph for Graph]

```
public class DirectedDFS
{
    private boolean[] marked;
    public DirectedDFS(Digraph G, int s)
    {
        marked = new boolean[G.V()];
        dfs(G, s);
    }
    private void dfs(Digraph G, int v)
    {
        marked[v] = true;
        for (int w : G.adj(v))
        if (!marked[w]) dfs(G, w);
    }
    public boolean visited(int v)
    { return marked[v]; }
}
```


Reachability application: program control-flow analysis

Every program is a digraph.

- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
\checkmark • Reachability.

- Path finding.
- Topological sort.
- Directed cycle detection.

Basis for solving difficult digraph problems.

- 2-satisfiability.
- Directed Euler path.
- Strongly-connected components. of edges of the graph being examined.

Breadth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)
Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v
- for each unmarked vertex adjacent from v: add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices in a digraph in time proportional to $E+V$.

Directed breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent from v and mark them.

tinyDG2.txt

$\xrightarrow{\text { tinyDG2.txt }}$| 6 | |
| :--- | :--- |
| 8 | |
| 5 | 0 |
| 2 | 4 |
| 3 | 2 |
| 1 | 2 |
| 0 | 1 |
| 4 | 3 |
| 3 | 5 |
| 0 | 2 |

Directed breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent from v and mark them.

\mathbf{v}	edgeTo[]	distTo[]
0	-	0
1	0	1
2	0	1
3	4	3
4	2	2
5	3	4

Mutiple-source shortest paths

Given a digraph and a set of source vertices, find shortest path from any vertex in the set to every other vertex.

Ex. $S=\{1,7,10\}$.

- Shortest path to 4 is $7 \rightarrow 6 \rightarrow 4$.
- Shortest path to 5 is $7 \rightarrow 6 \rightarrow 0 \rightarrow 5$.
- Shortest path to 12 is $10 \rightarrow 12$.

Q. How to implement multi-source shortest paths algorithm?

Directed graphs: quiz 2

Suppose that you want to design a web crawler. Which graph search algorithm should you use?
A. Depth-first search
B. Breadth-first search
C. Either A or B
D. Neither A nor B
E. I don't know.

Web crawler output

BFS crawl

http://www.princeton.edu
http://www.w3.org
http://ogp.me
http://giving.princeton.edu
http://www.princetonartmuseum.org
http://www.goprincetontigers.com
http://library.princeton.edu
http://he1pdesk.princeton.edu
http://tigernet.princeton.edu
http://alumni.princeton.edu
http://gradschool.princeton.edu
http://vimeo.com
http://princetonusg.com
http://artmuseum.princeton.edu
http://jobs.princeton.edu
http://odoc.princeton.edu
http://blogs.princeton.edu
http://www.facebook.com
http://twitter.com
http://www.youtube.com
http://deimos.apple.com
http://qeprize.org
http://en.wikipedia.org

DFS crawl

```
http://www.princeton.edu
http://deimos.apple.com
http://www.youtube.com
http://www.google.com
http://news.google.com
http://csi.gstatic.com
http://googlenewsblog.blogspot.com
http://labs.google.com
http://groups.google.com
http://img1.blogblog.com
http://feeds.feedburner.com
http:/buttons.googlesyndication.com
http://fusion.google.com
http://insidesearch.blogspot.com
http://agoogleaday.com
http://static.googleusercontent.com
http://searchresearch1.blogspot.com
http://feedburner.google.com
http://www.dot.ca.gov
http://www.TahoeRoads.com
http://www.LakeTahoeTransit.com
http://www.laketahoe.com
http://ethel.tahoeguide.com
```


Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]

- Choose root web page as source s.
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).

Bare-bones web crawler: Java implementation

4.2 Directed Graphs

Vinsroduction

Algorithms

Robert Sedgewick I Kevin Wayne

- digraph API
- digraiph search
- topological sort
- strong components
http://algs4.cs.princeton.edu

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.
0. Algorithms

1. Complexity Theory
2. Artificial Intelligence
3. Intro to CS
4. Cryptography
5. Scientific Computing
6. Advanced Programming

precedence constraint graph

feasible schedule

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

$0 \rightarrow 5$	$0 \rightarrow 2$
$0 \rightarrow 1$	$3 \rightarrow 6$
$3 \rightarrow 5$	$3 \rightarrow 4$
$5 \rightarrow 2$	$6 \rightarrow 4$
$6 \rightarrow 0$	$3 \rightarrow 2$
$1 \rightarrow 4$	

directed edges
DAG

Solution. DFS. What else?

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

tinyDAG7.txt	
7	
11	
0	5
0	2
0	1
3	6
3	5
3	4
5	2
6	4
6	0
3	2

a directed acyclic graph

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

postorder
4125063
topological order
3605214

Depth-first search order

```
public class DepthFirstOrder
{
    private boolean[] marked;
    private Stack<Integer> reversePostorder;
    public DepthFirstOrder(Digraph G)
    {
        reversePostorder = new Stack<Integer>();
        marked = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            if (!marked[v]) dfs(G, v);
    }
    private void dfs(Digraph G, int v)
    {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
        reversePostorder.push(v);
    }
    public Iterable<Integer> reversePostorder()
    { return reversePostorder; }
}
```

returns all vertices in
"reverse DFS postorder"

Topological sort in a DAG: intuition

Why does topological sort algorithm work?

- First vertex in postorder has outdegree 0.
- Second-to-last vertex in postorder can only point to last vertex.
- ...

postorder
$\begin{array}{lllllll}4 & 1 & 2 & 5 & 0 & 6 & 3\end{array}$
topological order
$\begin{array}{lllllll}3 & 6 & 0 & 5 & 2 & 1 & 4\end{array}$

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.
Pf. Consider any edge $v \rightarrow w$. When $d f s(v)$ is called:

- Case 1: dfs(w) has already been called and returned.
- thus, w appears before v in postorder
- Case 2: dfs(w) has not yet been called.
- dfs(w) will get called directly or indirectly by dfs(v)
- so, dfs(w) will finish before dfs(v)
- thus, wappears before v in postorder
- Case 3: dfs(w) has already been called, but has not yet returned.
- function-call stack contains path from w to v
- edge $v \rightarrow$ w would complete a cycle
- contradiction (this case can't happen in a DAG)

ed.	dfs (0)
	$\begin{aligned} & \mathrm{dfs}(1) \\ & \mathrm{dfs}(4) \end{aligned}$
	4 done
	1 done dfs(2)
	2 done
	dfs (5)
	check
(v)	5 done
	0 done
	check 1
	check 2
$\mathrm{v}=3 \longrightarrow \mathrm{dfs}$ (3)	
$\begin{gathered} \text { case } 2 \\ (\mathrm{w}=6) \end{gathered} \quad \begin{gathered} \text { dfs (6) } \\ \text { check } 0 \end{gathered}$	
】 check 4	
3 done	
check 4	
check 5	
check 6	

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle. Solution. DFS. What else? See textbook.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

http:/ /xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```
public class A extends B
{
}
```

```
% javac A.java
```

% javac A.java
A.java:1: cyclic inheritance
involving A
public class A extends B { }
^
1 error

```
```

public class B extends C

```
public class B extends C
{
{
}
```

}

```
public class \(C\) extends \(A\)
\{
\}

\section*{Directed cycle detection application: spreadsheet recalculation}

Microsoft Excel does cycle detection (and has a circular reference toolbar!)


\section*{Depth-first search orders}

Observation. DFS visits each vertex exactly once. The order in which it does so can be important.

\section*{Orderings.}
- Preorder: order in which dfs() is called.
- Postorder: order in which dfs() returns.
- Reverse postorder: reverse order in which dfs() returns.
```

private void dfs(Graph G, int v)
{
marked[v] = true;
preorder.enqueue(v);
for (int w : G.adj(v))
if (!marked[w]) dfs(G, w);
postorder.enqueue(v);
reversePostorder.push(v);
}

```

\subsection*{4.2 Directed Graphs}

\section*{- introduction}
- digraph API

\section*{Algorithms}

Robert Sedgewick | Kevin Wayne
digraph search
- topological sort
- strong components

\section*{Strongly-connected components}

Def. Vertices \(v\) and \(w\) are strongly connected if there is both a directed path from \(v\) to \(w\) and a directed path from \(w\) to \(v\).

Key property. Strong connectivity is an equivalence relation:
- \(v\) is strongly connected to \(v\).
- If \(v\) is strongly connected to \(w\), then \(w\) is strongly connected to \(v\).
- If \(v\) is strongly connected to \(w\) and \(w\) to \(x\), then \(v\) is strongly connected to \(x\).

Def. A strong component is a maximal subset of strongly-connected vertices.


5 strongly-connected components

\section*{Directed graphs: quiz 3}

How many strong components are in a DAG with \(V\) vertices and \(E\) edges?
A. 0
B. 1
C. \(V\)
D. \(E\)
E. I don't know.


\section*{Connected components vs. strongly-connected components}
v and w are connected if there is a path between \(v\) and \(w\)
v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v


5 strongly-connected components
connected component id (easy to compute with DFS)
id[] \(\begin{array}{rrrrrrrrrrrrr}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 & 2\end{array}\)
```

public boolean connected(int v, int w)
{ return id[v] == id[w]; }
constant-time client connectivity query

```
strongly-connected component id (how to compute?)
\(\operatorname{id[]} \begin{array}{rrrrrrrrrrrrr}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 1 & 0 & 1 & 1 & 1 & 1 & 3 & 4 & 3 & 2 & 2 & 2 & 2\end{array}\)
```

public boolean strong7yConnected(int v, int w)
{ return id[v] == id[w]; }

```

```

constant-time client strong-connectivity query

```

\section*{Strong component application: ecological food webs}

Food web graph. Vertex = species; edge = from producer to consumer.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

Strong component application: software modules
Software module dependency graph.
- Vertex = software module.
- Edge: from module to dependency.


Firefox


Internet Explorer

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!

\section*{Strong components algorithms: brief history}

1960s: Core OR problem.
- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).
- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

\section*{Kosaraju-Sharir algorithm: intuition}

Reverse graph. Strong components in \(G\) are same as in \(G^{R}\).

Kernel DAG. Contract each strong component into a single vertex.

Idea.

- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

digraph \(G\) and its strong components
kernel DAG of G (topological order: A B C D E)

\section*{Kosaraju-Sharir algorithm demo}

Phase 1. Compute reverse postorder in \(G^{R}\).
Phase 2. Run DFS in \(G\), visiting unmarked vertices in reverse postorder of \(G^{R}\).

digraph G

\section*{Kosaraju-Sharir algorithm demo}

Phase 1. Compute reverse postorder in \(G^{R}\).
\[
\begin{array}{lllllllllllll}
1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8
\end{array}
\]

reverse digraph \(G^{R}\)

\section*{Kosaraju-Sharir algorithm demo}

Phase 2. Run DFS in \(G\), visiting unmarked vertices in reverse postorder of \(G^{R}\).
\begin{tabular}{lllllllllllll}
1 & 0 & 2 & 4 & 5 & 3 & 11 & 9 & 12 & 10 & 6 & 7 & 8
\end{tabular}

\begin{tabular}{cc}
\(\mathbf{v}\) & id[] \\
\hline 0 & 1 \\
1 & 0 \\
2 & 1 \\
3 & 1 \\
4 & 1 \\
5 & 1 \\
6 & 3 \\
7 & 4 \\
8 & 3 \\
9 & 2 \\
10 & 2 \\
11 & 2 \\
12 & 2
\end{tabular}
done

\section*{Kosaraju-Sharir algorithm}

Simple (but mysterious) algorithm for computing strong components.
- Phase 1: run DFS on \(G^{R}\) to compute reverse postorder.
- Phase 2: run DFS on \(G\), considering vertices in order given by first DFS.

DFS in reverse digraph \(\mathrm{G}^{\text {R }}\)

check unmarked vertices in the order 0123456789101112

reverse postorder for use in second dfs () 1024531191210678


\section*{Kosaraju-Sharir algorithm}

Simple (but mysterious) algorithm for computing strong components.
- Phase 1: run DFS on \(G^{R}\) to compute reverse postorder.
- Phase 2: run DFS on \(G\), considering vertices in order given by first DFS.

DFS in original digraph G

check unmarked vertices in the order



\section*{Kosaraju-Sharir algorithm}

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to \(E+V\).

Pf.
- Running time: bottleneck is running DFS twice (and computing \(G^{R}\) ).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!

\section*{Connected components in an undirected graph (with DFS)}
```

public class CC
{
private boolean marked[];
private int[] id;
private int count;
public CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
for (int v = 0; v < G.V(); v++)
{
if (!marked[v])
{
dfs(G, v);
count++;
}
}
}
private void dfs(Graph G, int v)
{
marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if (!marked[w])
dfs(G, w);
}
public boolean connected(int v, int w)
{ return id[v] == id[w]; }
}

```

\section*{Strong components in a digraph (with two DFSs)}
```

public class KosarajuSharirSCC
{
private boolean marked[];
private int[] id;
private int count;
public KosarajuSharirSCC(Digraph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
for (int v : dfs.reversePostorder())
{
if (!marked[v])
{
dfs(G, v);
count++;
}
}
}
private void dfs(Digraph G, int v)
{
marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if (!marked[w])
dfs(G, w);
}
public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }
}

```

Digraph-processing summary: algorithms of the day
single-source reachability
in a digraph


DFS
topological sort in a DAG


DFS
strong components in a digraph


Kosaraju-Sharir DFS (twice)```

