

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Last updated on Mar 24, 2015, 8:05 PM

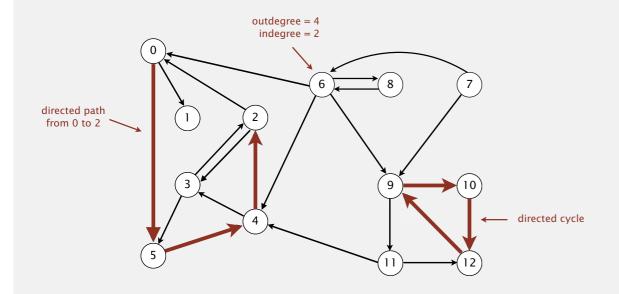
Algorithms ROBERT SEDGEWICK | KEVIN WAYNE http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

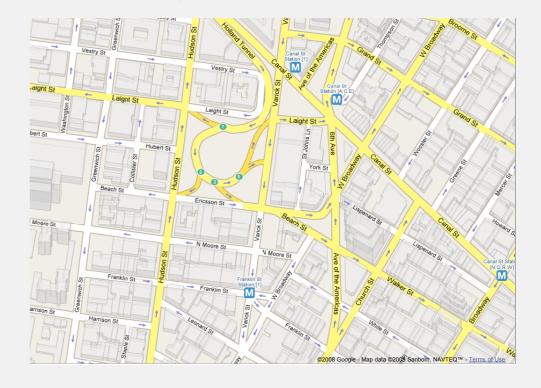
Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.



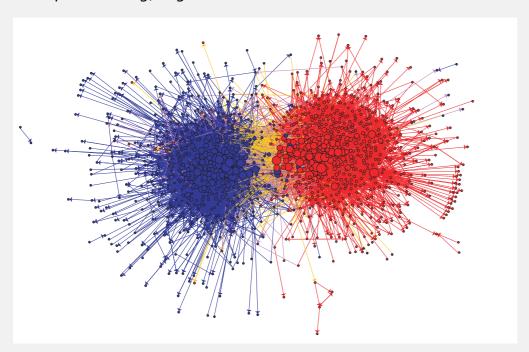
Road network

Vertex = intersection; edge = one-way street.



Political blogosphere graph

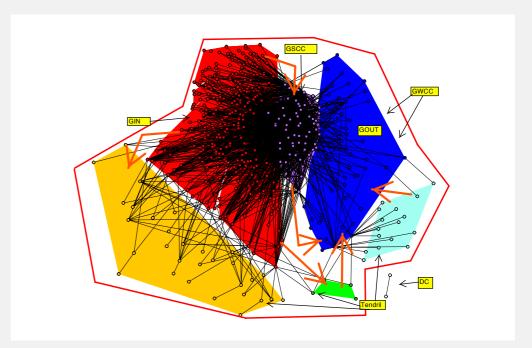
Vertex = political blog; edge = link.



The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

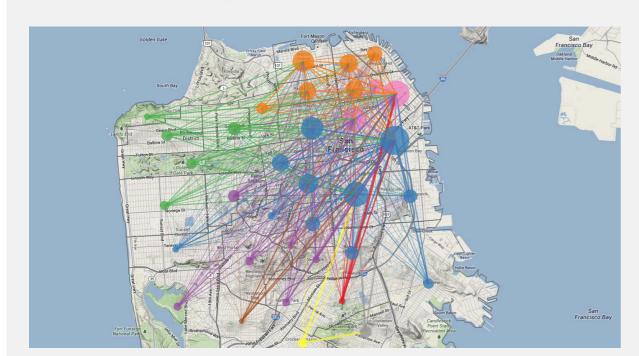


The Topology of the Federal Funds Market, Bech and Atalay, 2008

6

Uber taxi graph

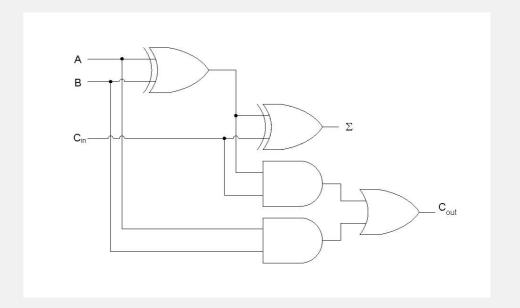
Vertex = taxi pickup; edge = taxi ride.



http://blog.uber.com/2012/01/09/uberdata-san-franciscomics/

Combinational circuit

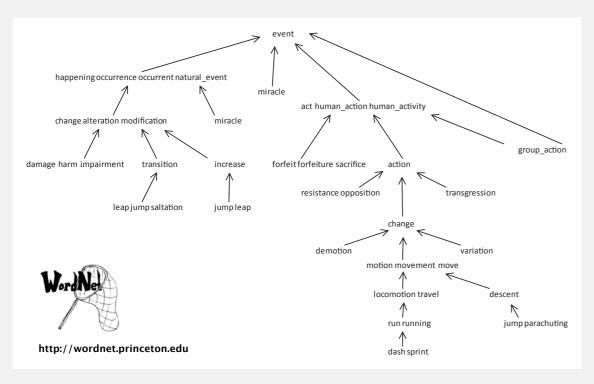
Vertex = logical gate; edge = wire.



_

WordNet graph

Vertex = synset; edge = hypernym relationship.



Some digraph problems

problem	description
s→t path	Is there a path from s to t?
shortest s→t path	What is the shortest path from s to t?
directed cycle	Is there a directed cycle in the graph?
topological sort	Can the digraph be drawn so that all edges point upwards?
strong connectivity	Is there a directed path between all pairs of vertices?
transitive closure	For which vertices v and w is there a directed path from v to w?
PageRank	What is the importance of a web page?

Digraph applications

digraph	vertex	directed edge		
transportation	street intersection	one-way street		
web	web page	hyperlink		
food web	species	predator-prey relationship		
WordNet	synset hypernym			
scheduling	task	precedence constraint		
financial	bank	transaction		
cell phone	person	placed call		
infectious disease	person	infection		
game	board position	legal move		
citation	journal article	citation		
object graph	object	pointer		
inheritance hierarchy	class	inherits from		
control flow	code block	jump		

4.2 DIRECTED GRAPHS

introduction

digraph API

digraph search

topological sort

strong components

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE
http://algs4.cs.princeton.edu

,

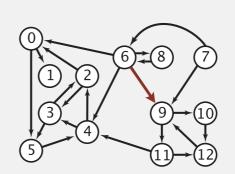
Digraph API

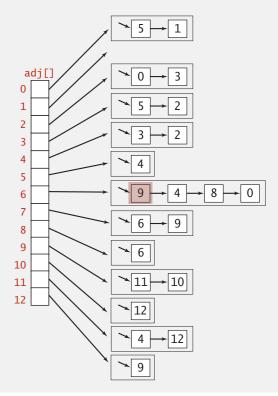
Almost identical to Graph API.

public class	Digraph	
	Digraph(int V)	create an empty digraph with V vertices
	Digraph(In in)	create a digraph from input stream
void	addEdge(int v, int w)	add a directed edge v→w
Iterable <integer></integer>	adj(int v)	vertices adjacent from v
int	V()	number of vertices
int	E()	number of edges
Digraph	reverse()	reverse of this digraph
String	toString()	string representation

Digraph representation: adjacency lists

Maintain vertex-indexed array of lists.





13

Directed graphs: quiz 1

Which is order of growth of running time of the following code fragment if the digraph uses the adjacency-lists representation?

> for (int v = 0; v < G.V(); v++) for (int w : G.adj(v))

> > StdOut.println(v + "->" + w);

prints each edge exactly once

- **A.** *V*
- $\mathbf{B.} \qquad E+V$
- \mathbf{C} . V^2
- $\mathbf{D.} \qquad VE$
- E. I don't know.

Digraph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent from $\boldsymbol{\nu}.$
- · Real-world digraphs tend to be sparse.

huge number of vertices, small average vertex outdegree

representation	space	insert edge from v to w	edge from v to w?	iterate over vertices adjacent from v?
list of edges	E	1	E	E
adjacency matrix	V^2	1 †	1	V
adjacency lists	E+V	1	outdegree(v)	outdegree(v)

† disallows parallel edges

Taisanows paraner eage

Adjacency-lists graph representation (review): Java implementation

```
public class Graph
   private final int V;
   private final Bag<Integer>[] adj;

    adjacency lists

  public Graph(int V)
                                                     create empty graph
                                                     with V vertices
      this.V = V;
      adj = (Bag<Integer>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<Integer>();
                                                    add edge v-w
  public void addEdge(int v, int w)
      adj[v].add(w);
      adj[w].add(v);
                                                     iterator for vertices
   public Iterable<Integer> adj(int v)
                                                     adjacent to v
     return adj[v]; }
```

4.2 DIRECTED GRAPHS

introduction

July digraph API

digraph search

> topological sort

strong components

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Adjacency-lists digraph representation: Java implementation

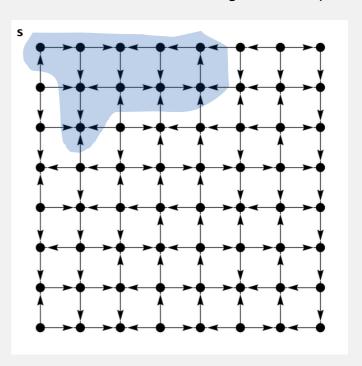
```
public class Digraph
   private final int V;
  private final Bag<Integer>[] adj;

    adjacency lists

  public Digraph(int V)
                                                     create empty digraph
                                                    with V vertices
      this.V = V;
      adj = (Bag<Integer>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<Integer>();
                                                   add edge v→w
  public void addEdge(int v, int w)
      adj[v].add(w);
                                                    iterator for vertices
   public Iterable<Integer> adj(int v)
                                                    adjacent from v
     return adj[v]; }
```

Reachability

Problem. Find all vertices reachable from s along a directed path.



Depth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark vertex v.

Recursively visit all unmarked

vertices w adjacent from v.

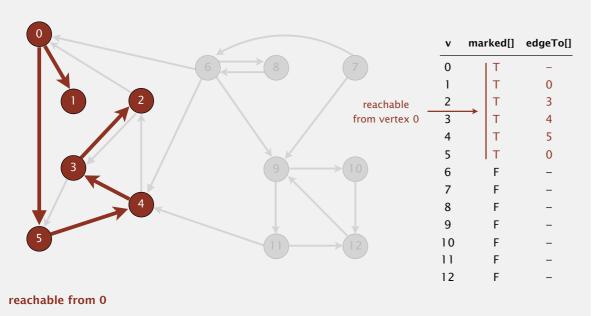
21

23

Depth-first search demo

To visit a vertex *v*:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent from v.

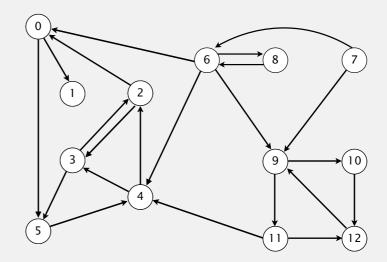


Depth-first search demo

To visit a vertex v:

• Mark vertex v as visited.

• Recursively visit all unmarked vertices adjacent from v.



a directed graph

0→1 2→0 11→12 12→9 9→10 9→11 8→9 10→12 11→4 4→3 3→5 6→8 8→6 5→4 0→5 6→4

4→2

2→3

3→2

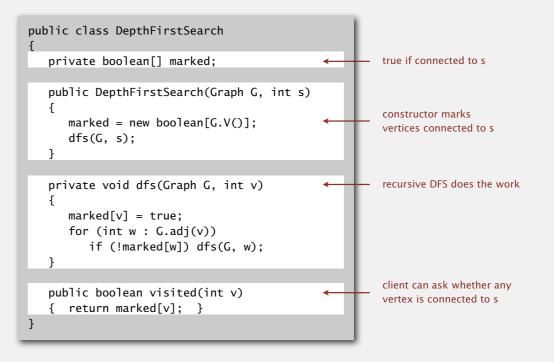
6→0

6→9

7→6

Depth-first search (in undirected graphs)

Recall code for undirected graphs.



22

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.

[substitute Digraph for Graph]

```
public class DirectedDFS
   private boolean[] marked;
                                                          true if path from s
   public DirectedDFS(Digraph G, int s)
                                                          constructor marks
      marked = new boolean[G.V()];
                                                          vertices reachable from s
      dfs(G, s);
                                                          recursive DFS does the work
   private void dfs(Digraph G, int v)
      marked[v] = true;
      for (int w : G.adj(v))
          if (!marked[w]) dfs(G, w);
                                                          client can ask whether any
   public boolean visited(int v)
                                                          vertex is reachable from s
   { return marked[v]; }
```

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).

Reachability application: program control-flow analysis

Every program is a digraph.

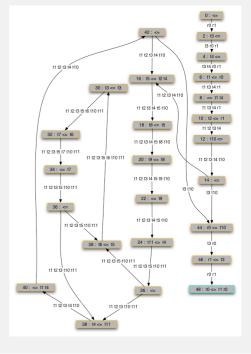
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.

Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.

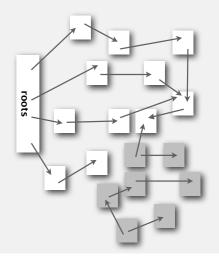


Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- · Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).



Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

- ✓ Reachability.
 - · Path finding.
 - · Topological sort.
 - · Directed cycle detection.

Basis for solving difficult digraph problems.

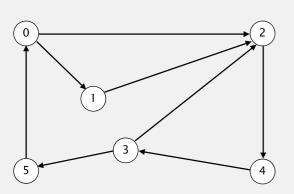
- 2-satisfiability.
- Directed Euler path.
- Strongly-connected components.

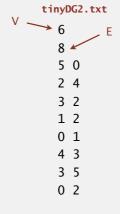
SIAM J. COMPUT. Vol. 1, No. 2, June 1972 **DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS***ROBERT TARJAN† **Abstract.** The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Directed breadth-first search demo

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent from v and mark them.





Breadth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited. Repeat until the queue is empty:

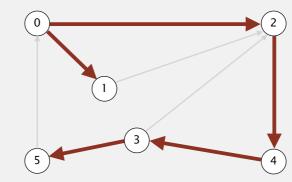
- remove the least recently added vertex v
- for each unmarked vertex adjacent from v: add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices in a digraph in time proportional to E + V.

Directed breadth-first search demo

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent from v and mark them.



v	edgeTo[]	distTo[]
0	-	0
1	0	1
2	0	1
3	4	3
4	2	2
5	3	4

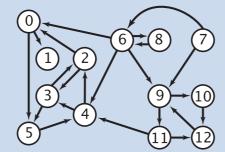
graph G

MULTIPLE-SOURCE SHORTEST PATHS

Given a digraph and a set of source vertices, find shortest path from any vertex in the set to every other vertex.

Ex. $S = \{1, 7, 10\}.$

- Shortest path to 4 is $7 \rightarrow 6 \rightarrow 4$.
- Shortest path to 5 is $7 \rightarrow 6 \rightarrow 0 \rightarrow 5$.
- Shortest path to 12 is $10 \rightarrow 12$.

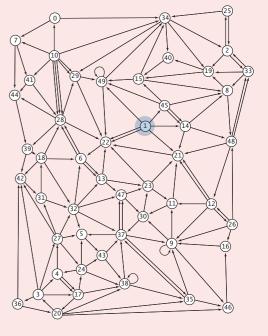


Q. How to implement multi-source shortest paths algorithm?

Directed graphs: quiz 2

Suppose that you want to design a web crawler. Which graph search algorithm should you use?

- A. Depth-first search
- B. Breadth-first search
- C. Either A or B
- D. Neither A nor B
- E. I don't know.



34

Web crawler output

BFS crawl

http://www.princeton.edu http://www.w3.org

http://ogp.me

http://giving.princeton.edu

http://www.princetonartmuseum.org http://www.goprincetontigers.com

http://library.princeton.edu

http://helpdesk.princeton.edu
http://tigernet.princeton.edu

http://alumni.princeton.edu

http://gradschool.princeton.edu

http://vimeo.com

 $\verb|http://princetonusg.com| \\$

http://artmuseum.princeton.edu

http://jobs.princeton.edu http://odoc.princeton.edu

http://blogs.princeton.edu
http://www.facebook.com

http://twitter.com

http://www.youtube.com
http://deimos.apple.com

http://qeprize.org
http://en.wikipedia.org

. . .

DFS crawl

http://www.princeton.edu

http://deimos.apple.com

http://www.youtube.com
http://www.google.com

http://news.google.com

http://csi.gstatic.com

http://googlenewsblog.blogspot.com

http://labs.google.com
http://groups.google.com

http://img1.blogblog.com

http://feeds.feedburner.com

http:/buttons.googlesyndication.com

http://fusion.google.com

http://insidesearch.blogspot.com

http://agoogleaday.com

http://static.googleusercontent.com
http://searchresearch1.blogspot.com

http://feedburner.google.com

http://www.dot.ca.gov

http://www.TahoeRoads.com
http://www.LakeTahoeTransit.com

http://www.laketahoe.com http://ethel.tahoeguide.com

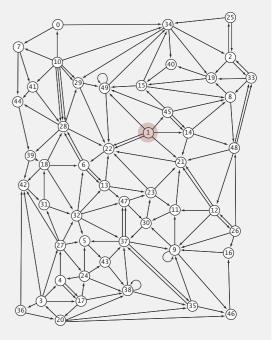
...

Breadth-first search in digraphs application: web crawler

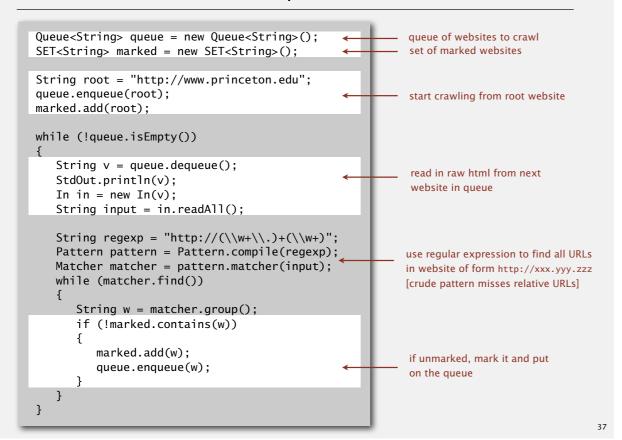
Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]

- Choose root web page as source s.
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).



Bare-bones web crawler: Java implementation

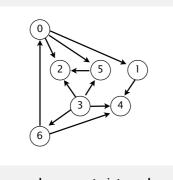


Precedence scheduling

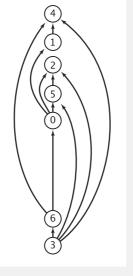
Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

- 0. Algorithms
- 1. Complexity Theory
- 2. Artificial Intelligence
- 3. Intro to CS
- 4. Cryptography
- 5. Scientific Computing
- 6. Advanced Programming



precedence constraint graph



feasible schedule

digraph API Algorithms ROBERT SEDGEWICK | KEVIN WAYNE http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

introduction

digraph search

topological sort

strong components

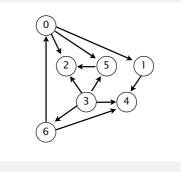
Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

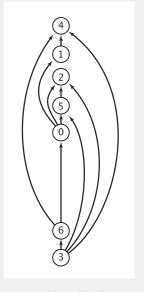
 $0\rightarrow 2$ 3→2

directed edges



DAG

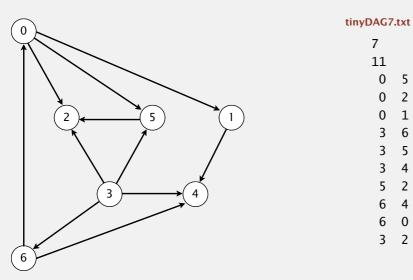
Solution. DFS. What else?



topological order

Topological sort demo

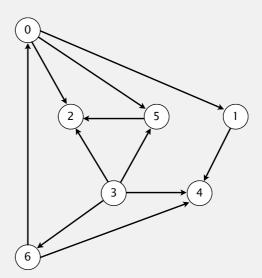
- Run depth-first search.
- Return vertices in reverse postorder.



a directed acyclic graph

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.



postorder

4 1 2 5 0 6 3

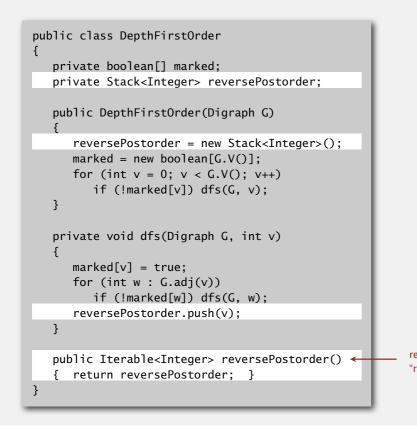
topological order

3 6 0 5 2 1 4

done

42

Depth-first search order



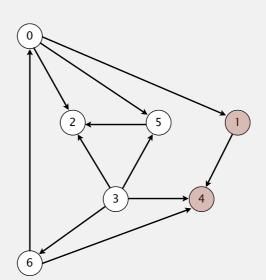
returns all vertices in "reverse DFS postorder"

43

Topological sort in a DAG: intuition

Why does topological sort algorithm work?

- First vertex in postorder has outdegree 0.
- Second-to-last vertex in postorder can only point to last vertex.
- ..



postorder

4 1 2 5 0 6 3

topological order

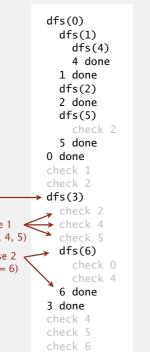
3 6 0 5 2 1 4

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge $v \rightarrow w$. When dfs(v) is called:

- Case 1: dfs(w) has already been called and returned.
 - thus, w appears before v in postorder
- Case 2: dfs(w) has not yet been called.
 - dfs(w) will get called directly or indirectly by dfs(v)
 - so, dfs(w) will finish before dfs(v)
 - thus, w appears before v in postorder
- Case 3: dfs(w) has already been called, but has not yet returned.
 - function-call stack contains path from w to v
 - edge v→w would complete a cycle
 - contradiction (this case can't happen in a DAG)



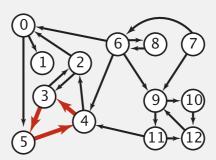
done

45

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle. Pf.

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.



a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle.

Solution. DFS. What else? See textbook.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

PAGE 3			
DEPARTMENT	COURSE	DESCRIPTION	PREREQS
COMPUTER SCIENCE	CPSC 432	INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.	CPSC 432
00	0000 1155	- millioned collection projecti	O. 17

http://xkcd.com/754

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```
public class A extends B
{
    ...
}
```

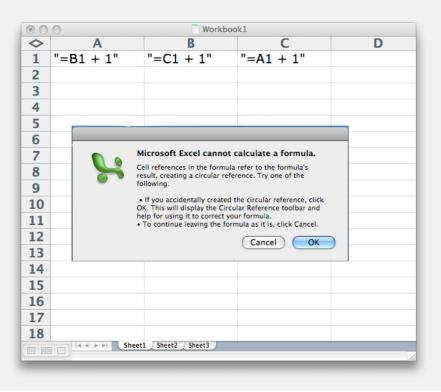
```
public class B extends C
{
    ...
}
```

```
public class C extends A
{
    ...
}
```

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)



Depth-first search orders

Observation. DFS visits each vertex exactly once. The order in which it does so can be important.

Orderings.

- Preorder: order in which dfs() is called.
- Postorder: order in which dfs() returns.
- Reverse postorder: reverse order in which dfs() returns.

```
private void dfs(Graph G, int v)
{
    marked[v] = true;
    preorder.enqueue(v);
    for (int w : G.adj(v))
        if (!marked[w]) dfs(G, w);
    postorder.enqueue(v);
    reversePostorder.push(v);
}
```

5

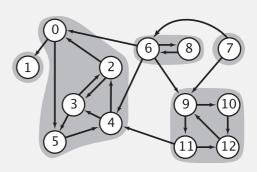
Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:

- *v* is strongly connected to *v*.
- If v is strongly connected to w, then w is strongly connected to v.
- If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.



5 strongly-connected components

4.2 DIRECTED GRAPHS

introduction
digraph API
digraph search
topological sort

strong components

Algorithms

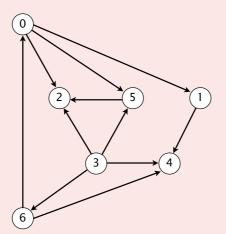
ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Directed graphs: quiz 3

How many strong components are in a DAG with V vertices and E edges?

- **A.** 0
- **B.** 1
- C
- **D.** *I*
- E. I don't know.



55

connected component id (easy to compute with DFS)

3 connected components

v and w are connected if there is

a path between v and w

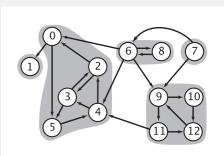
	0	1	2	3	4	5	6	7	8	9	10	11	12
id[]	0	0	0	0	0	0	1	1	1	2	2	2	2

public boolean connected(int v, int w)
{ return id[v] == id[w]; }

constant-time client connectivity query

v and w are strongly connected if there is both a directed

path from v to w and a directed path from w to v



5 strongly-connected components

strongly-connected component id (how to compute?)

id[] 1 0 1 2 3 4 5 6 7 8 9 10 11 12

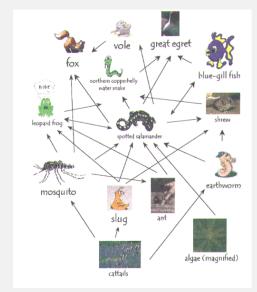
public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }

constant-time client strong-connectivity query

5

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.



http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

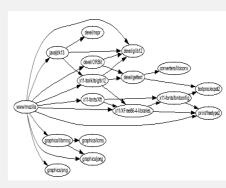
Strong component. Subset of species with common energy flow.

Strong component application: software modules

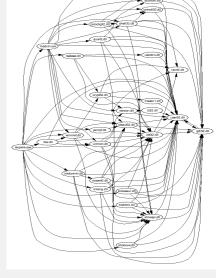
Connected components vs. strongly-connected components

Software module dependency graph.

- Vertex = software module.
- Edge: from module to dependency.



Firefox



Internet Explorer

Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components together.

Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- · Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).

- · Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

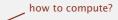
- · Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

Kosaraju-Sharir algorithm: intuition

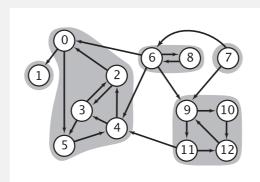
Reverse graph. Strong components in G are same as in G^R .

Kernel DAG. Contract each strong component into a single vertex.

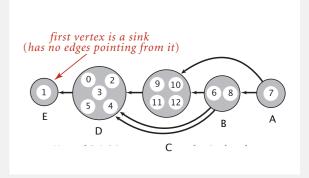
Idea.



- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.



digraph G and its strong components



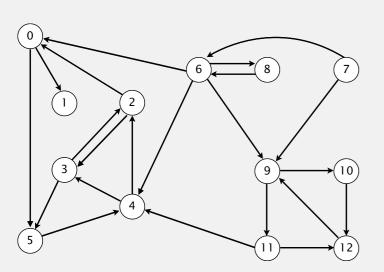
kernel DAG of G (topological order: A B C D E)

57

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R .

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R .

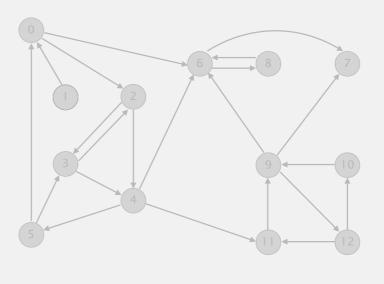


digraph G

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R .

1 0 2 4 5 3 11 9 12 10 6 7 8

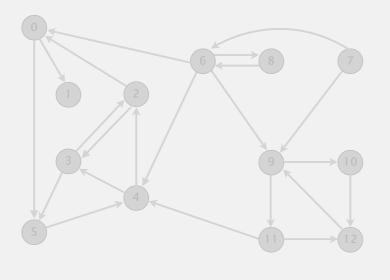


reverse digraph GR

Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R .

1 0 2 4 5 3 11 9 12 10 6 7 8



V	id[]
0	1
1	0
2	1
3	1
4	1
5	1
6	3
7	4
8	3
9	2
10	2
11	2
12	2

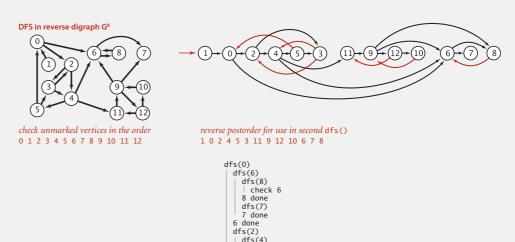
61

63

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.



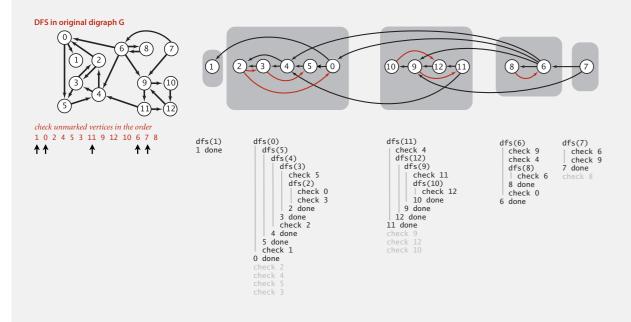
62

Kosaraju-Sharir algorithm

done

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.



Kosaraju-Sharir algorithm

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to E + V.

12 done check 7 check 6

Pf.

- Running time: bottleneck is running DFS twice (and computing G^R).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!

Connected components in an undirected graph (with DFS)

```
public class CC
  private boolean marked[];
private int[] id;
  private int count;
   public CC(Graph G)
      marked = new boolean[G.V()];
      id = new int[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v])
            dfs(G, v);
            count++;
   private void dfs(Graph G, int v)
      marked[v] = true;
     id[v] = count;
for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
   public boolean connected(int v, int w)
   { return id[v] == id[w]; }
```

03

Digraph-processing summary: algorithms of the day

single-source reachability in a digraph		DFS
topological sort in a DAG	0-02-03-03-03-03-03-03-03-03-03-03-03-03-03-	DFS
strong components in a digraph	0 6 7 8 8 1 1 2 9 10 10 11 11 12 12	Kosaraju-Sharir DFS (twice)

Strong components in a digraph (with two DFSs)

```
public class KosarajuSharirSCC
  private boolean marked[];
private int[] id;
  private int count;
   public KosarajuSharirSCC(Digraph G)
     marked = new boolean[G.V()];
     id = new int[G.V()];
     DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
      for (int v : dfs.reversePostorder())
         if (!marked[v])
            dfs(G, v);
            count++;
   private void dfs(Digraph G, int v)
     marked[v] = true;
     id[v] = count;
for (int w : G.adj(v))
        if (!marked[w])
            dfs(G, w);
   public boolean stronglyConnected(int v, int w)
   { return id[v] == id[w]; }
```

6