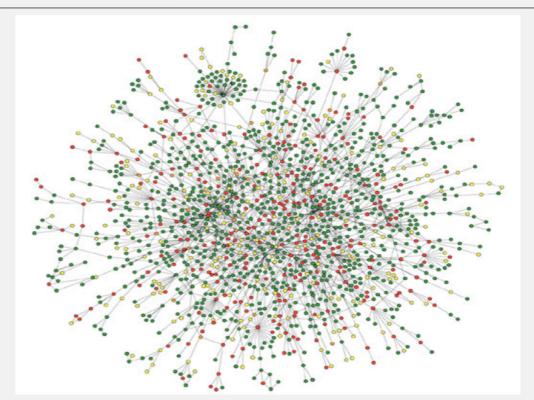
Algorithms

4.1 UNDIRECTED GRAPHS

- introduction
- graph API
- depth-first search
- breadth-first search
- challenges

Algorithms NORERT SEDGEWICK | KEVIN WAYNE http://algs4.cs.princeton.edu

Protein-protein interaction network



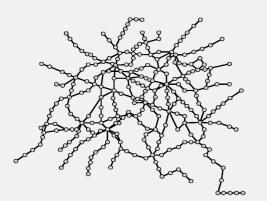
Reference: Jeong et al, Nature Review | Genetics

Undirected graphs

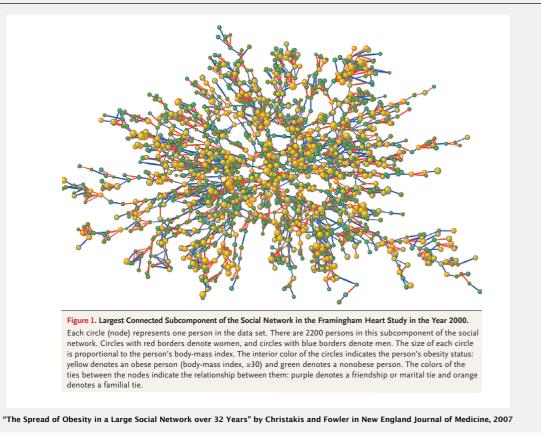
Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

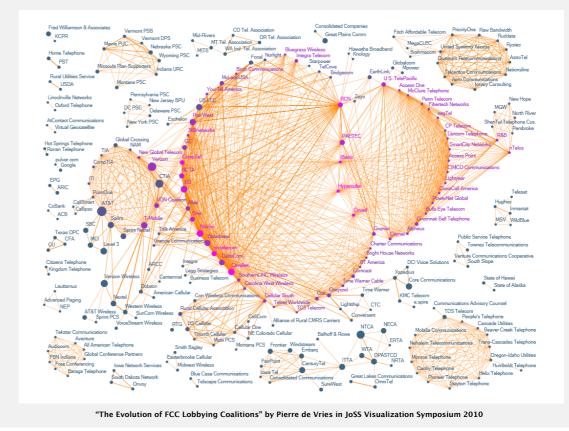
- Thousands of practical applications.
- Hundreds of graph algorithms known.
- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.



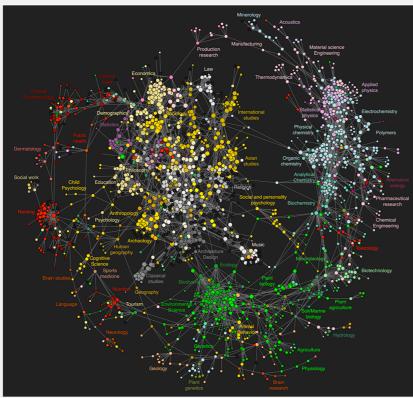
Framingham heart study



The evolution of FCC lobbying coalitions



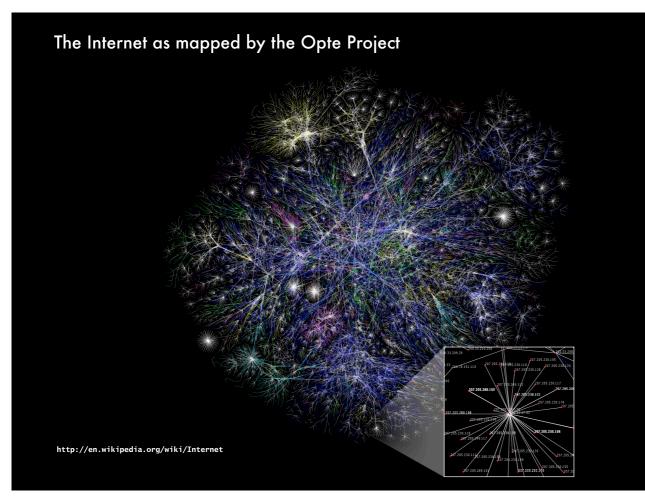
Map of science clickstreams



10 million Facebook friends

"Visualizing Friendships" by Paul Butler

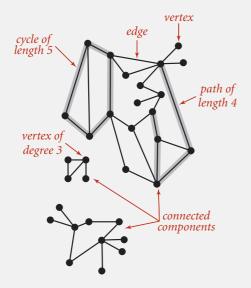
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803



Graph terminology

Path. Sequence of vertices connected by edges. Cycle. Path whose first and last vertices are the same.

Two vertices are **connected** if there is a path between them.



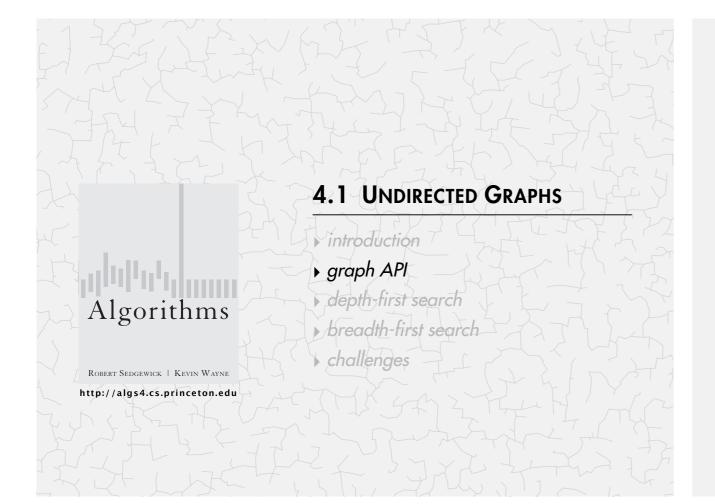
Graph applications

graph	vertex edge		
communication	telephone, computer fiber optic cable		
circuit	gate, register, processor	wire	
mechanical	joint	rod, beam, spring	
financial	stock, currency	transactions street connection legal move friendship synapse protein-protein interaction bond	
transportation	intersection		
internet	class C network		
game	board position		
social relationship	person		
neural network	neuron		
protein network	protein		
molecule	atom		

Some graph-processing problems

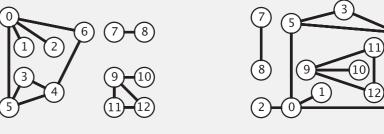
problem	description	
s-t path	Is there a path between s and t?	
shortest s-t path	What is the shortest path between s and t?	
cycle	Is there a cycle in the graph ?	
Euler cycle	Is there a cycle that uses each edge exactly once?	
Hamilton cycle	Is there a cycle that uses each vertex exactly once ?	
connectivity	Is there a path between every pair of vertices ?	
biconnectivity	Is there a vertex whose removal disconnects the graph?	
planarity	Can the graph be drawn in the plane with no crossing edges ?	
graph isomorphism	Are two graphs isomorphic?	

Challenge. Which graph problems are easy? difficult? intractable?



Graph representation

Graph drawing. Provides intuition about the structure of the graph.



two drawings of the same graph

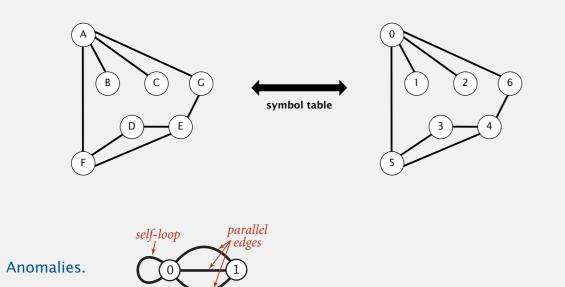
Caveat. Intuition can be misleading.

5

Graph representation

Vertex representation.

- This lecture: use integers between 0 and V-1.
- Applications: convert between names and integers with symbol table.



Graph API

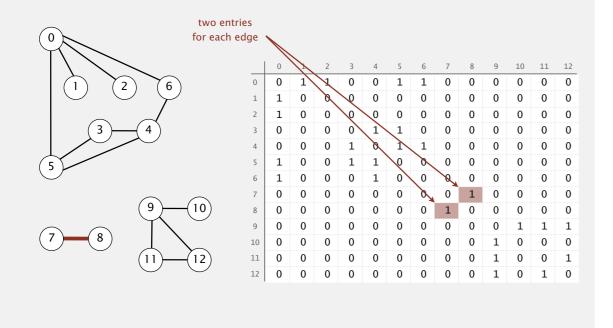
public class	Graph	
	Graph(int V)	create an empty graph with V vertices
	Graph(In in)	create a graph from input stream
void	addEdge(int v, int w)	add an edge v-w
Iterable <integer></integer>	adj(int v)	vertices adjacent to v
int	V()	number of vertices
int	Ε()	number of edges

// degree of vertex v in graph G
<pre>public static int degree(Graph G, int v)</pre>
{
int degree = 0;
for (int w : G.adj(v))
degree++;
return degree;
2

Graph representation: adjacency matrix

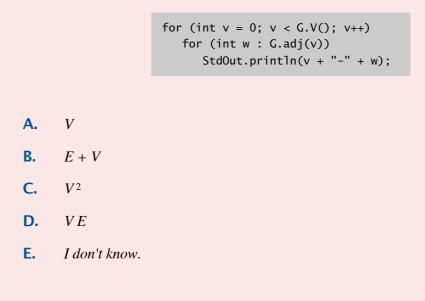
Maintain a two-dimensional V-by-V boolean array;

for each edge v-w in graph: adj[v][w] = adj[w][v] = true.



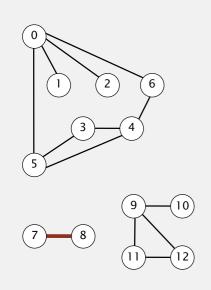
Undirected graphs: quiz 2

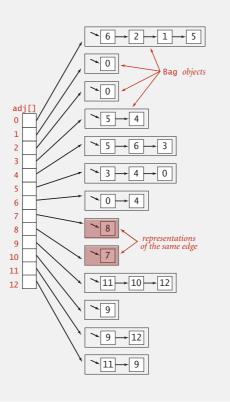
Which is order of growth of running time of the following code fragment if the graph uses the adjacency-matrix representation?



Graph representation: adjacency lists

Maintain vertex-indexed array of lists.





Undirected graphs: quiz 3

Α.

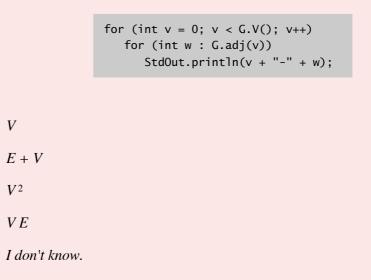
Β.

C.

D.

Ε.

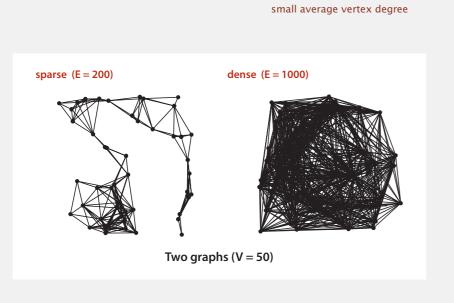
Which is order of growth of running time of the following code fragment if the graph uses the adjacency-lists representation?



Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse.



huge number of vertices,

Graph representations

21

23

In practice. Use adjacency-lists representation.

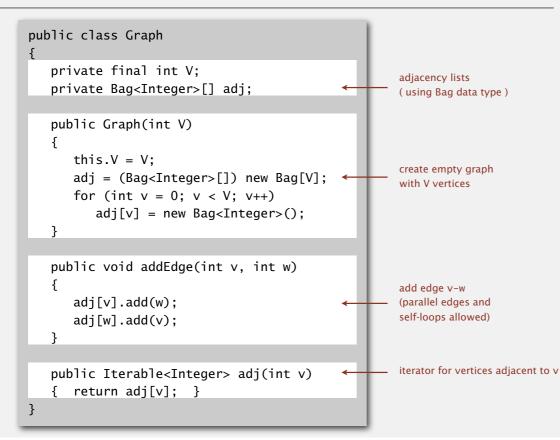
- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse.

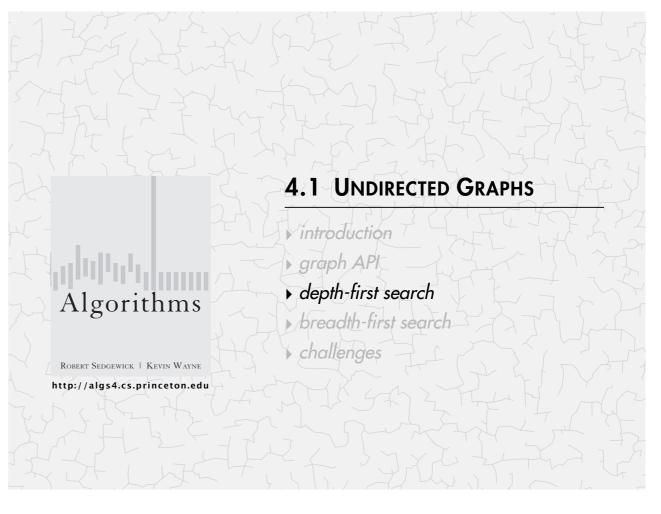
huge number of vertices, small average vertex degree

22

representation	space	add edge	edge between v and w?	iterate over vertices adjacent to v?
list of edges	E	1	Ε	E
adjacency matrix	V^2	1 †	1	V
adjacency lists	E+V	1	<i>degree</i> (v)	(degree(v))
				† disallows parallel edge

Adjacency-list graph representation: Java implementation

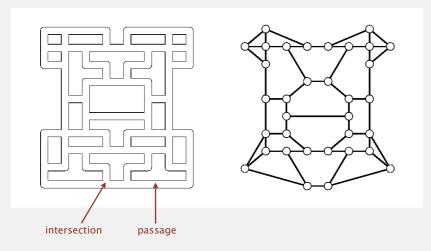




Maze exploration

Maze graph.

- Vertex = intersection.
- Edge = passage.



Goal. Explore every intersection in the maze.

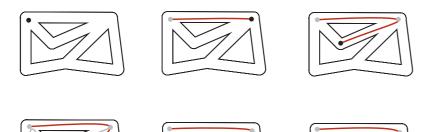
Maze exploration: National Building Museum

http://www.smithsonianmag.com/travel/winding-history-maze-180951998/?no-ist

Trémaux maze exploration

Algorithm.

- Unroll a ball of string behind you.
- Mark each newly discovered intersection and passage.
- Retrace steps when no unmarked options.



Trémaux maze exploration

Algorithm.

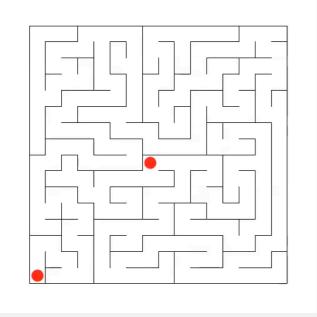
- Unroll a ball of string behind you.
- Mark each newly discovered intersection and passage.
- Retrace steps when no unmarked options.

First use? Theseus entered Labyrinth to kill the monstrous Minotaur; Ariadne instructed Theseus to use a ball of string to find his way back out.

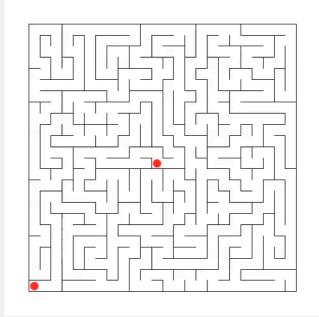
The Cretan Labyrinth (with Minotaur) http://commons.wikimedia.org/wiki/File:Minotaurus.gif

Claude Shannon (with electromechanical mouse) http://www.corp.att.com/attlabs/reputation/timeline/16shannon.html

Maze exploration: easy

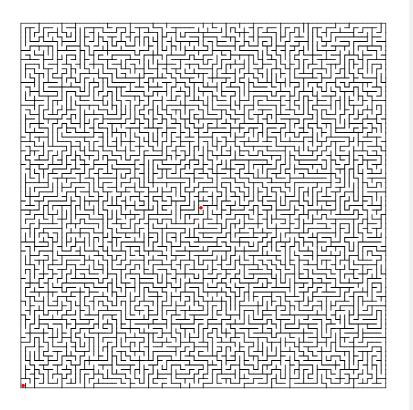


Maze exploration: medium



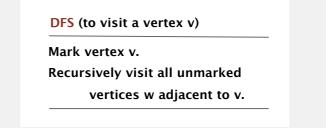
29

Maze exploration: challenge for the bored



Depth-first search

Goal. Systematically traverse a graph.



Typical applications.

- Find all vertices connected to a given source vertex.
- Find a path between two vertices.

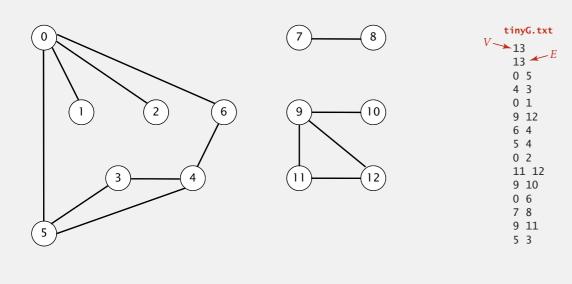
Design challenge. How to implement?

Depth-first search demo

To visit a vertex v :

• Mark vertex v.

• Recursively visit all unmarked vertices adjacent to v.



graph G

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

- Create a Graph object.
- Pass the Graph to a graph-processing routine.
- Query the graph-processing routine for information.

public class Paths Paths(Graph G, int s) *find paths in G from source s*

boolean	hasPathTo(int	v)
		- /

is there a path from s to v?

Iterable<Integer> pathTo(int v)

path from s to v; null if no such path

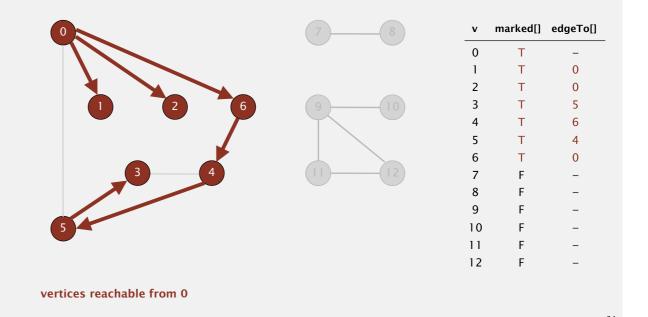
print all vertices

connected to s

Paths paths = new Paths(G, s); for (int v = 0; v < G.V(); v++) if (paths.hasPathTo(v)) StdOut.println(v);

To visit a vertex v:

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.



33

Depth-first search: data structures

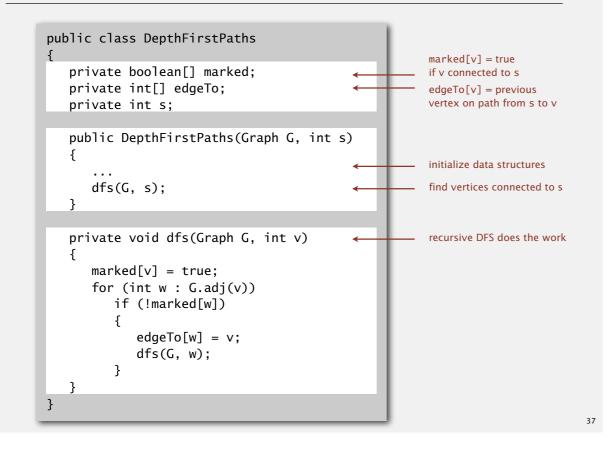
To visit a vertex *v* :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

Data structures.

- Boolean array marked[] to mark vertices.
- Integer array edgeTo[] to keep track of paths.
- (edgeTo[w] == v) means that edge v-w taken to discover vertex w
- Function-call stack for recursion.

Depth-first search: Java implementation

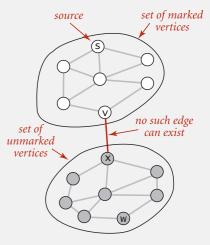


Depth-first search: properties

Proposition. DFS marks all vertices connected to *s* in time proportional to the sum of their degrees (plus time to initialize the marked[] array).

Pf. [correctness]

- If w marked, then w connected to s (why?)
- If w connected to s, then w marked.
 (if w unmarked, then consider last edge on a path from s to w that goes from a marked vertex to an unmarked one).



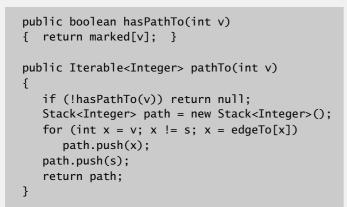
Pf. [running time]

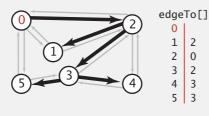
Each vertex connected to *s* is visited once.

Depth-first search: properties

Proposition. After DFS, can check if vertex v is connected to s in constant time and can find v-s path (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at vertex s.

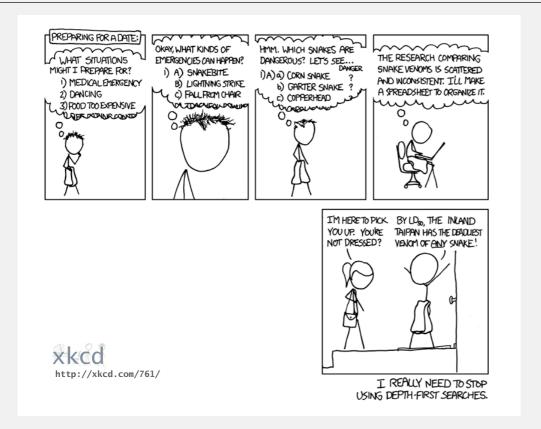


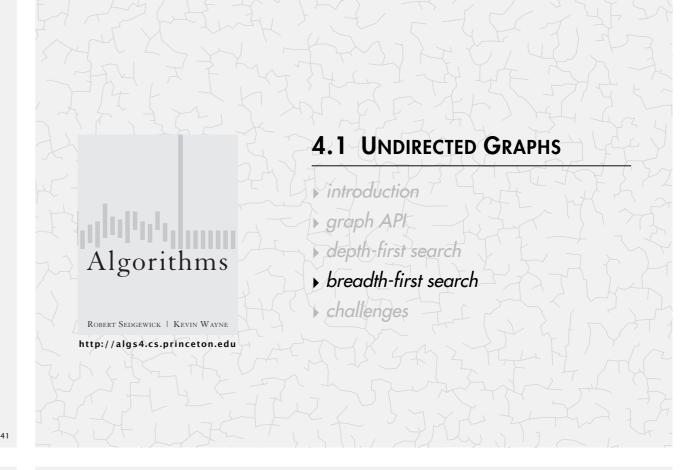


FLOOD FILL

Problem. Implement flood fill (Photoshop magic wand).

Depth-first search application: preparing for a date

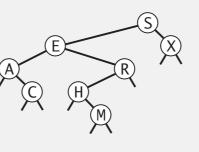




Graph search

Tree traversal. Many ways to explore every vertex in a binary tree.

- Inorder: A C E H M R S X
- Preorder: SEACRHMX
- Postorder: CAMHREXS
- Level-order: S E X A R C H M



Graph search. Many ways to explore every vertex in a graph.

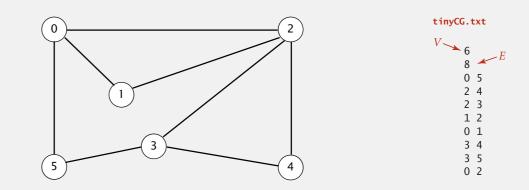
- Preorder: vertices in order DFS calls dfs(G, v).
- Postorder: vertices in order DFS returns from dfs(G, v).
- Level-order: vertices in increasing order of distance from s.

Breadth-first search demo

Repeat until queue is empty:

• Remove vertex *v* from queue.

• Add to queue all unmarked vertices adjacent to *v* and mark them.

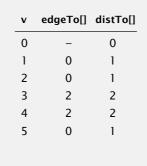


graph G

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

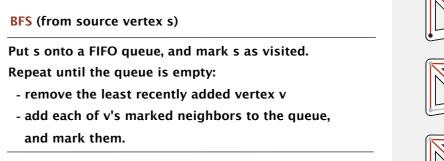


45

Breadth-first search

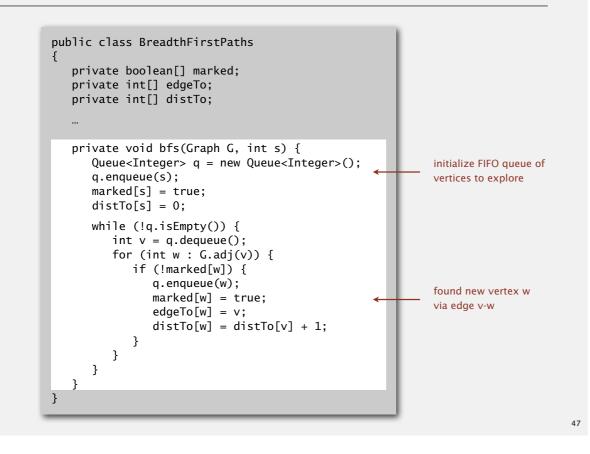
Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.



done

Breadth-first search: Java implementation

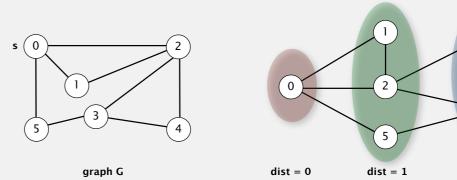


Breadth-first search properties

- Q. In which order does BFS examine vertices?
- A. Increasing distance (number of edges) from *s*.

queue always consists of ≥ 0 vertices of distance k from s, followed by ≥ 0 vertices of distance k+1

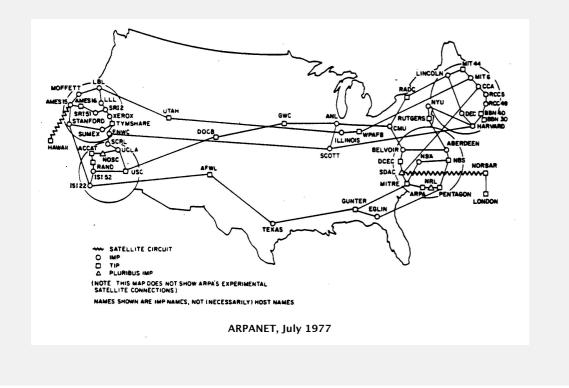
Proposition. In any connected graph *G*, BFS computes shortest paths from *s* to all other vertices in time proportional to E + V.



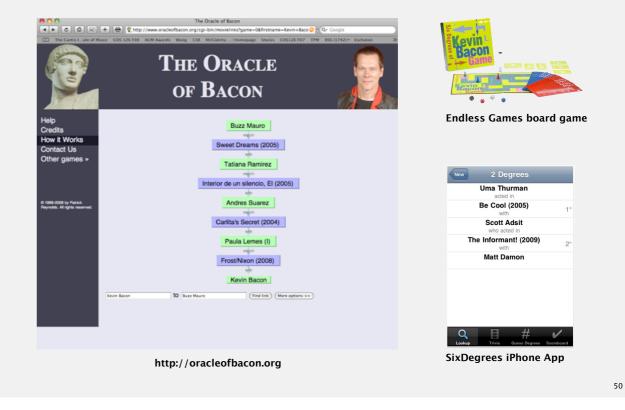
dist = 2

Breadth-first search application: routing

Fewest number of hops in a communication network.

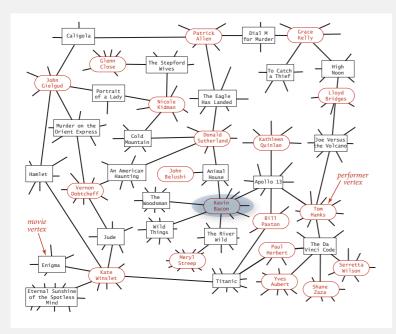


Breadth-first search application: Kevin Bacon numbers



Kevin Bacon graph

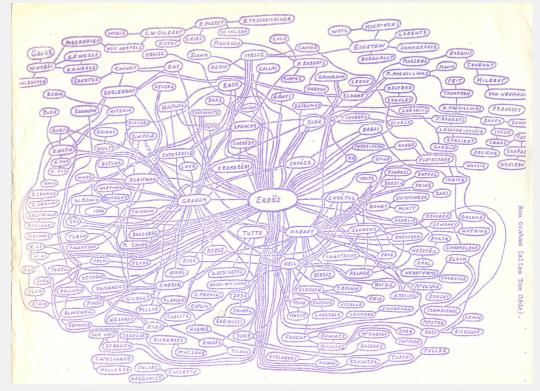
- Include one vertex for each performer and one for each movie.
- Connect a movie to all performers that appear in that movie.
- Compute shortest path from *s* = Kevin Bacon.



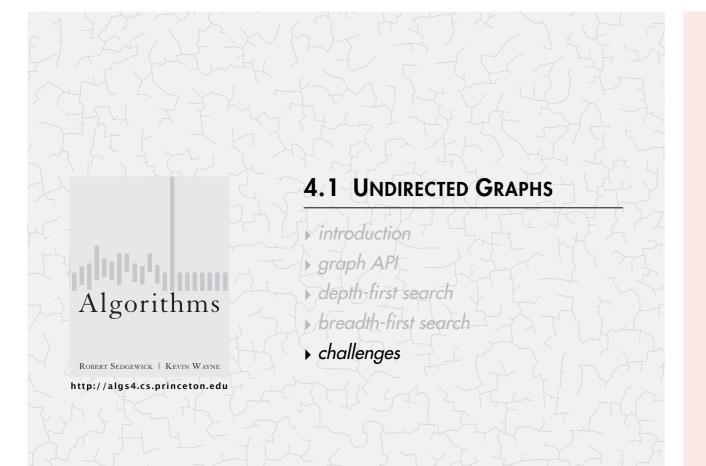
Breadth-first search application: Erdös numbers

49

51

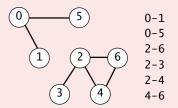


hand-drawing of part of the Erdös graph by Ron Graham



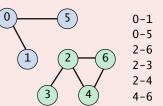
Graph-processing challenge 1

Problem. Identify connected components.



How difficult?

- A. Any programmer could do it.
- B. Typical diligent algorithms student could do it.
- C. Hire an expert.
- **D.** Intractable.
- E. No one knows.

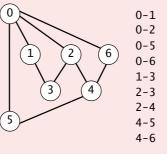


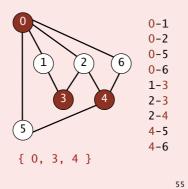
Graph-processing challenge 2

Problem. Is a graph bipartite?

How difficult?

- A. Any programmer could do it.
- **B.** Typical diligent algorithms student could do it.
- C. Hire an expert.
- D. Intractable.
- E. No one knows.



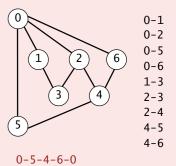


Graph-processing challenge 3

Problem. Find a cycle in a graph (if one exists).

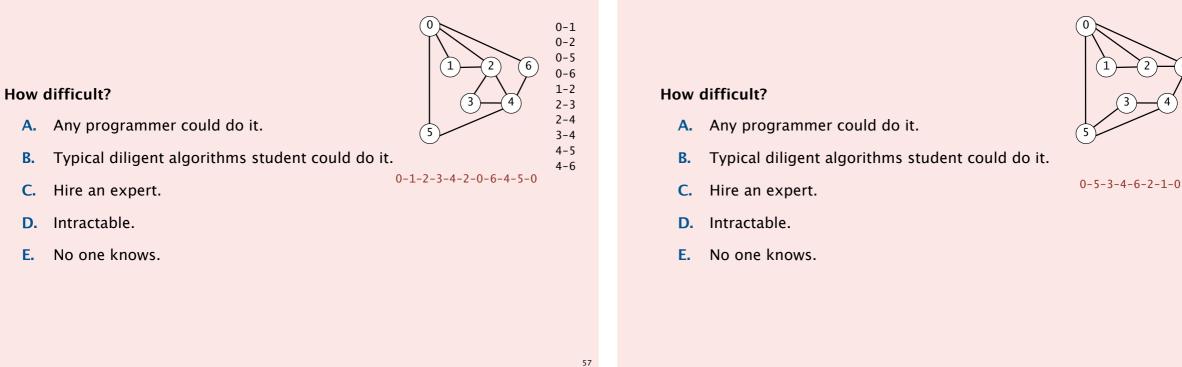
How difficult?

- A. Any programmer could do it.
- B. Typical diligent algorithms student could do it.
- C. Hire an expert.
- D. Intractable.
- E. No one knows.



Graph-processing challenge 4

Problem. Is there a (general) cycle that uses every edge exactly once?



Graph-processing challenge 6

Problem. Are two graphs identical except for vertex names?

How difficult?

- A. Any programmer could do it.
- **B.** Typical diligent algorithms student could do it.
- C. Hire an expert.
- D. Intractable.
- E. No one knows.

	0-1 0-2 0-5 0-6 3-4 3-5 4-5
5	4-5 4-6

3 0-4 0-5 0-6 4 1-4 1-5 5 2-4 3-4 5-6

Graph-processing challenge 7

Any programmer could do it.

Hire an expert.

No one knows

Intractable.

How difficult?

Α.

B.

С.

D.

Ε.

Graph-processing challenge 5

Problem. Can you draw a graph in the plane with no crossing edges?

Problem. Is there a cycle that contains every vertex exactly once?

try it yourself at http://planarity.net

Typical diligent algorithms student could do it.

0-1

0-2

0-5

0-6

1-2

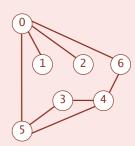
2-6

3-4

3-5

4-5

4-6



 $0 \leftrightarrow 4$, $1 \leftrightarrow 3$, $2 \leftrightarrow 2$, $3 \leftrightarrow 6$, $4 \leftrightarrow 5$, $5 \leftrightarrow 0$, $6 \leftrightarrow 1$

Graph traversal summary

graph problem	BFS	DFS	time
s-t path	v	v	E + V
shortest s-t path	~		E + V
cycle	~	~	E + V
Euler cycle		~	E + V
Hamilton cycle			$2^{1.657 V}$
bipartiteness (odd cycle)	~	~	E + V
connected components	~	~	E + V
biconnected components		~	E + V
planarity		~	E + V
graph isomorphism			$2^{c\sqrt{V\log V}}$

BFS and DFS enables efficient solution of many (but not all) graph problems.