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Undirected graphs Protein-protein interaction network

Graph. Set of vertices connected pairwise by edges. [~ .

Why study graph algorithms? 2% /. - X .,." o
« Thousands of practical applications. S ots At "_ o AT
« Hundreds of graph algorithms known. NORee of 7T

« Interesting and broadly useful abstraction.
» Challenging branch of computer science and discrete math. .

2 o »
. - a . o » .
. . . co ° :M'.,. 4 o}‘. -‘..\9 N .,’..- L = &
o o i ‘.. & 4 .:o re® qan .. v o ..-. ’ e
. . o DR P i et Pl AP o® . -
» oe o%ey & v e L © .
. - = oh. @ S0 o0 ® | g ¢ o
% B ¢ . */%a o & o o . 3
*s o oS I® 207 % o ) °
e o -
o » . e e - . ® o
o o Py ° oe® o ° ° -
e e g . a %
° » . - L
'...> El s ®
o
- élb o | » >
. °

Reference: Jeong et al, Nature Review | Genetics



Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

Map of science clickstreams

The evolution of FCC lobbying coalitions
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“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

10 million Facebook friends

facebook

"Visuali

ing Friendships" by Paul Butler



The Internet as mapped by the Opte Project Graph applications

communication telephone, computer fiber optic cable
circuit gate, register, processor wire
mechanical joint rod, beam, spring
financial stock, currency transactions
transportation intersection street
internet class C network connection
game board position legal move
social relationship person friendship
neural network neuron synapse
protein network protein protein-protein interaction

molecule atom bond

http://en.wikipedia.org/wiki/Internet

Graph terminology Some graph-processing problems

Path. Sequence of vertices connected by edges. ,_
problem description

Cycle. Path whose first and last vertices are the same.

s-t path Is there a path between s and t ?
Two vertices are connected if there is a path between them. shortest s—t path What is the shortest path between s and t ?
vertex cycle Is there a cycle in the graph ?
do
cycle of eree
length’5 \ l Euler cycle Is there a cycle that uses each edge exactly once ?
path of Hamilton cycle Is there a cycle that uses each vertex exactly once ?
« length 4
connectivity Is there a path between every pair of vertices ?
vertex of
degree 3 N biconnectivity Is there a vertex whose removal disconnects the graph ?
planarity Can the graph be drawn in the plane with no crossing edges ?
connected graph isomorphism Are two graphs isomorphic?

components

Challenge. Which graph problems are easy? difficult? intractable?
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Graph representation

Vertex representation.
e This lecture: use integers between 0 and V- 1.
« Applications: convert between names and integers with symbol table.

symbol table

3 arallel
sel]; loop pe Fres

Anomalies. ‘Q‘l'c
__

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

two drawings of the same graph

Caveat. Intuition can be misleading.

Graph API

public class Graph

Graph(int V)

create an empty graph with V vertices

void addEdge(int v, int w) add an edge v-w

Iterable<Integer> adj(int v) vertices adjacent to v

int VO number of vertices

// degree of vertex v in graph G
public static int degree(Graph G, int v)
{
int degree = 0;
for (int w : G.adj(v))
degree++;
return degree;



Graph representation: adjacency matrix

Maintain a two-dimensional V-by-V boolean array;

for each edge v—w in graph: adj[vl[w] = adj[w]l[v] = true.
two entries
0 for each edge
\\ 2 3 4 5 6 7 8 9 10 11 12
0 e e o] 0 1 01 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0
e o 3 0 0 0 0 1 1 0 0 0 0 0 0 0
sl 0 0 0 1 1.0 0 0 0 0 0
s s/ 1 0 0 1 1N\0 0 0 0 0 0 0
s/ 1 0 0o 0 1 0 0 0 0 0 0
710 0o o 0o o0 o ol 0o 0o o o
o @ s/ o 0o o 0o o o o o0 0o 0 0 O
s/o o o 0o 0o 0 0 0 0 0 1 1 1
w0 0 0 0 0 0 0 0 O 1 0 0 0
0 @ m/ 0 0o 0 0 0 0 0 0 0 1 0 0 1
2/0 0 0 0 0 0 0O 0 O 1 0 1 0
17
Graph representation: adjacency lists
Maintain vertex-indexed array of lists.
-2

o
Bag objects
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Undirected graphs: quiz 2

Which is order of growth of running time of the following code fragment if

the graph uses the adjacency-matrix representation?

m o 0N ® p

E+V

V2

VE

I don't know.

for (int v =0; v < G.VQ; Vv++)

for (int w : G.adj(v))

StdOut.printin(v + "-" + w);

Undirected graphs: quiz 3

Which is order of growth of running time of the following code fragment if

the graph uses the adjacency-lists representation?

m

S nNn = »

E+V

V2

VE

I don't know.

for (int v = 0; v < G.VQ; Vv++)

for (int w : G.adj(v))
StdOut.println(v +

+ W);

20



Graph representations

In practice. Use adjacency-lists representation.
» Algorithms based on iterating over vertices adjacent to v.
« Real-world graphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

sparse (E=200)

dense (E=1000)

Two graphs (V = 50)

21

Adjacency-list graph representation: Java implementation

public class Graph
{

private final int V; ) .
. . adjacency lists
private Bag<Integer>[] adj; < (using Bag data type )

pubTlic Graph(int V)

{
this.V = V; create empty graph
adj = (Bag<Integer>[]) new Bag[Vl; <“—F— ihVvertices
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>(Q);
}

public void addEdge(int v, int w)

{ add edge v-w
adj[v].addw); <«—+— (parallel edges and

adj[w].add(v); self-loops allowed)

public Iterable<Integer> adj(int v) <«—F— iterator for vertices adjacent to v
{ return adj[v]; 3}

28]

Graph representations

In practice. Use adjacency-lists representation.
» Algorithms based on iterating over vertices adjacent to v.
« Real-world graphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

edge between iterate over vertices

representation space add edge )
P P 9 v and w? adjacent to v?

adjacency matrix V2 17 1 \%

adjacency lists E+V 1 degree(v) degree(v)

1 disallows parallel edges

22
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Maze exploration

Maze graph.
« Vertex = intersection.
« Edge = passage.
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intersection passage

Goal. Explore every intersection in the maze.

Trémaux maze exploration

Algorithm.
« Unroll a ball of string behind you.
« Mark each newly discovered intersection and passage.
» Retrace steps when no unmarked options.

= A =)
& A =

Maze exploration: National Building Museum

http://www.smithsonianmag.com/travel /winding-history-maze-180951998/?no-ist
25 26

Trémaux maze exploration

Algorithm.
« Unroll a ball of string behind you.
» Mark each newly discovered intersection and passage.
» Retrace steps when no unmarked options.

First use? Theseus entered Labyrinth to kill the monstrous Minotaur;
Ariadne instructed Theseus to use a ball of string to find his way back out.

The Cretan Labyrinth (with Minotaur) Claude Shannon (with electromechanical mouse)
http://commons.wikimedia.org/wiki/File:Minotaurus.gif http:/ /www.corp.att.com/attlabs/reputation/timeline/16shannon.html

27 28



Maze exploration: easy
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Depth-first search

Goal. Systematically traverse a graph.

Idea. Mimic maze exploration. «— function-call stack acts as ball of string

DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked

vertices w adjacent to v.

Typical applications.
« Find all vertices connected to a given source vertex.
« Find a path between two vertices.

Design challenge. How to implement?

31
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Depth-first search demo Depth-first search demo

To visit a vertex v: @ To visit a vertex v:
« Mark vertex v. * Mark vertex v.
e Recursively visit all unmarked vertices adjacent to v. * Recursively visit all unmarked vertices adjacent to v.
0 a e tinyG. txt v marked[] edgeTo[]
. . V13
13 - 0 T -
05 1 T 0
g 3 2 T 0
1
(o) (CO—9) 5 12 T
6 4 4 T 6
54 5 T 4
02 6 T 0
(D—9) (—2 010 O
9 10 7 F -
06 8 F -
78 9 F -
9 11
5 c 3 10 F -
11 F -
12 F =
graph G vertices reachable from 0
33
Design pattern for graph processing Depth-first search: data structures
Design pattern. Decouple graph data type from graph processing. To visit a vertex v:
« Create a Graph object. e Mark vertex v.
» Pass the Graph to a graph-processing routine. » Recursively visit all unmarked vertices adjacent to v.
« Query the graph-processing routine for information.
, Data structures.
public class Paths )
» Boolean array marked[] to mark vertices.
Paths(Graph G, int s) find paths in G from source s « Integer array edgeTo[] to keep track of paths.
boolean hasPathTo(int v) is there a path from s to v? (edgeTo[w] == v) means that edge v-w taken to discover vertex w
Iterable<Integer> pathTo(int v) path from s to v; null if no such path « Function-call stack for recursion.

Paths paths = new Paths(G, s);

for (int v = 0; v < G.VO; v++)
if (paths.haéPathTo(v)) orint all vertices
StdOut.printin(v); B — connected tos

35



Depth-first search: Java implementation Depth-first search: properties

e @las B s Proposition. DFS marks all vertices connected to s in time proportional to

{ marked[v] = true the sum of their degrees (plus time to initialize the marked[] array).
private boolean[] marked; «——F ifvconnectedto s
private int[] edgeTo; <«——F—— edgeTo[v] = previous
private int s; vertex on path from s to v Pf. [correctness] source set of marked
vertices
e If w marked, then w connected to s (why? 4
public DepthFirstPaths(Graph G, int s) W W {elimye
{ * If w connected to s, then w marked.
<«———+—— initialize data structures . .
e _ _ (if w unmarked, then consider last edge
dfs(G, s); <«———F—— find vertices connected to s
} on a path from s to w that goes from a o such edge
marked vertex to an unmarked one). B = e
?rivate void dfs(Graph G, int v) <«——+F  recursive DFS does the work vertices .
marked[v] = true; Pf. [running time]
for (int w : G.adj(v)) . ..
i f (!marked[wﬁ Each vertex connected to s is visited once.
{
edgeTo[w] = v;
dfs(G, w);
}
}

37 38

Depth-first search: properties

Proposition. After DFS, can check if vertex vis connected to s in constant
time and can find v—s path (if one exists) in time proportional to its length. Problem. Implement flood fill (Photoshop magic wand).

Pf. edgeTo[] is parent-link representation of a tree rooted at vertex s.

public boolean hasPathTo(int v)
{ return marked[v]; 1}

public Iterable<Integer> pathTo(int v) 0 e edgeTo[]
{ 12
if ('hasPathTo(v)) return null; e 2o
Stack<Integer> path = new Stack<Integer>(); 3|2
for (int x = v; X !=s; x = edgeTo[x]) e e @ 43
path.push(x); 513

path.push(s);
return path;

39 40



Depth-first search application: preparing for a date

PREPPRING FOR A DATE: A~~~ ‘F‘"\_‘_]
OKAY, WHAT KINDS OF HAM. WHICH SNAKES ARE
| Ve srormions N EMERGENGES G PR DAGEROS? LET'S SiE.,  THE RESEARCH COMPRRING
MIGHT T PREPPRE. RR? i) A) SNAKEBITE DAYD) CORN SNAKE SNAKE VENOMS 15 SCATTERED
) MEDICAL EMERGENCY B) LIGHTNING STRIKE ¥) GARTER SNAKE. 7 ., D WOONSISTENT. TLL MAKE
2) DANCING M O FALLRIM AR W A SPREADSHEET T ORGANIZE IT:
2)FO0D ToO BXPENSIVE MAANA N SNANM
TMURPRITR (0] 0 ®)
5 i i ‘O
o %\/
TMHERETOPKK.  BY LDy, THE INAND
YOUUP. YOURE  TAIPAN HAS THE DEADUEST
NOT DRESSED?  VENQM OF AhY SNAKE!
\ \K
xkcd [

http://xkcd.com/761/

Graph search

T REALY NEED To SToP

USING DEPTH-FIRST SEARCHES.

Tree traversal. Many ways to explore every vertex in a binary tree.

e |Inorder:
o Preorder:
e Postorder:

ACEHMRSX
SEACRHMX
CAMHREXS

e Level-order: SEXARCHM

Graph search. Many ways to explore every vertex in a graph.

o Preorder: vertices in order DFS calls dfs(G, v).

» Postorder: vertices in order DFS returns from dfs(G, v).

» Level-order: vertices in increasing order of distance from s.

41
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Breadth-first search demo

Repeat until queue is empty:

®,

* Remove vertex v from queue.

» Add to queue all unmarked vertices adjacent to v and mark them.

() ()

T

graph G

tinyCG. txt

c{<

OWWORNNOO®

NU"#I—‘NW#U‘I\

T

44



Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

e Add to queue all unmarked vertices adjacent to vand mark them.

(o) >(:

S ¢ o

done

Breadth-first search: Java implementation

v edgeTo[] distTo[]

0 = 0
1 0 1
2 0 1
3 2 2
4 2 2
5 0 1

45

pubTlic class BreadthFirstPaths
{

private boolean[] marked;
private int[] edgeTo;
private int[] distTo;

private void bfs(Graph G, int s) {

Queue<Integer> q = new Queue<Integer>(Q);

g.enqueue(s);
marked[s] = true;
distTo[s] 0;

while (!q.isEmpty()) {
int v = gq.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {

g.enqueue(w) ;
marked[w] = true;
edgeTo[w] V;
distTo[w] distTo[Vv]

initialize FIFO queue of
vertices to explore

found new vertex w
via edge v-w

47

Breadth-first search

Repeat until queue is empty:
 Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent to vand mark them.

N

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
- remove the least recently added vertex v

i

- add each of v's marked neighbors to the queue,

and mark them.

4

46

Breadth-first search properties

Q. In which order does BFS examine vertices?
A. Increasing distance (number of edges) from s.

AN

queue always consists of > 0 vertices of distance k from s,
followed by >0 vertices of distance k+1

Proposition. In any connected graph G, BFS computes shortest paths
from s to all other vertices in time proportional to E + V.

o ()
o*o

graph G dist =0 dist=1 dist = 2

48



Breadth-first search application: routing

Fewest number of hops in a communication network.

SATELLITE CIRCUIT
P

TP
PLURIBUS 1MP

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS )

NAMES SHOWN ARE iMP NAMCS, NOT (NECESSARILY) HOST NAMES

oo

ARPANET, July 1977

49
Kevin Bacon graph
 Include one vertex for each performer and one for each movie.
« Connect a movie to all performers that appear in that movie.
« Compute shortest path from s = Kevin Bacon.
The Stepford
Gielgud p—
rtrai loyd
Kidman
Orient Express Donald
Quinlan he Volcano|
Haunting Belushi House performer
Vernon vertex
/
movie
A Paxton
vertex
wild The Da
(e |
Enigma Streep Serretta
:
Winslet
Eternal Sunshine|
of the Spotless
Mind
51

Breadth-first search application: Kevin Bacon numbers

ann The Oracle of Bacon
<[> e UGl + ]@) € 1o s /wwm oracieomtacen org/co-Biasmoviel nksXgame - CaArstname - Kevie s baco O B Q
The Curtis | woe of Musc  COS 126 FOR  ACM Awands  Wang

SIA McClachy | Memepage  Stocks  COSIZE FOT  TPM  RSS (1742)%  Kschaten

1 jo0 5001390 XIS

THE ORACLE

OF BACON

Buzz Mauro

Sweet Dreams (2005)

Tatiana Ramirez

Interior de un silencio, El (2005) |

: Uma Thurman
acted in
Andres Suarez

Be Cool (2005) ;
with
Carlita's Secret (2004) | Scott Adsit
- who acted in
Paula Lemes (1) The Informant! (2009) )
with
FrostNixon (2008) Matt Damon
Kewn Bacon 10 suzz Mauro find bk ) ( More optoms >>
=

http://oracleofbacon.org SixDegrees iPhone App

Breadth-first search application: Erdés numbers

hand-drawing of part of the Erdés graph by Ron Graham

50
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Graph-processing challenge 1

Problem. Identify connected components.

ce

4.1 UNDIRECTED GRAPHS

How difficult? e

A. Any programmer could do it.

B. Typical diligent algorithms student could do it.
Algorlthms C. Hire an expert. Q o)
Lol D. Intractable. c e @
» cha enges
ROBERT SEDGEWICK | KEVIN WAYNE E. NO one kn0WS. '
http://algs4.cs.princeton.edu e e
Graph-processing challenge 2 Graph-processing challenge 3
Problem. Is a graph bipartite? Problem. Find a cycle in a graph (if one exists).
O 0-1 O
0-2
0-5
@) (2) 19 o ORONO
How difficult? oo g How difficult? oo
A. Any programmer could do it. e i:;‘ A. Any programmer could do it. e
B. Typical diligent algorithms student could do it. 4o B. Typical diligent algorithms student could do it. 0-5-4-6-0
C. Hire an expert. C. Hire an expert.
D. Intractable. _ D. Intractable.
E. No one knows. ) E. No one knows.

A DNNREOOOO
|
v WwWwwo i N

55
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Graph-processing challenge 4 Graph-processing challenge 5

Problem. Is there a (general) cycle that uses every edge exactly once? Problem. Is there a cycle that contains every vertex exactly once?

A D WWNROOOO

OO uviui AOONO LN R

0-1
0-2
0-5
0-6
How difficult? ;:g How difficult?
A. Any programmer could do it. ;:i A. Any programmer could do it.
B. Typical diligent algorithms student could do it. 2:2 B. Typical diligent algorithms student could do it.
0-1-2-3-4-2-0-6-4-5-0
C. Hire an expert. C. Hire an expert. 0-5-3-4-6-2-1-0
D. Intractable. D. Intractable.
E. No one knows. E. No one knows.
57
Graph-processing challenge 6 Graph-processing challenge 7
Problem. Are two graphs identical except for vertex names? Problem. Can you draw a graph in the plane with no crossing edges?

try it yourself at http://planarity.net

How difficult?

(3—*»)
A. Any programmer could do it. e/

How difficult?

A. Any programmer could do it. !’

A DA WWOOOO
[
S uviui A OYUT N R

B. Typical diligent algorithms student could do it. B. Typical diligent algorithms student could do it.
C. Hire an expert. e 0-4 C. Hire an expert.
0-5
D. Intractable. e 0-6 D. Intractable.
e 1-4
E. No one knows. e ﬂ 1-5 E. No one knows
e 2-4
3-4
0 5-6

0<4, 1«3, 2<2, 3<6, 4<5, 5<0, 6<1

59
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Graph traversal summary

BFS and DFS enables efficient solution of many (but not all) graph problems.

v v E+V

s-t path
shortest s-t path v E+V
cycle v v E+V
Euler cycle v E+V
Hamilton cycle 91.657V
bipartiteness (odd cycle) v (%4 E+V
connected components v v E+V
biconnected components v E+V
planarity v E+V

graph isomorphism 9cvViogV



