3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context

Robert Sedgewick / Kevin Wayne
http://algs4.cs.princeton.edu

Symbol table implementations: summary

implementation	guarantee			average case			ordered ops?	$\begin{gathered} \text { key } \\ \text { interface } \end{gathered}$
	search	insert	delete	search hit	insert	delete		
sequential search (unordered list)	N	N	N	N	N	N		equals()
binary search (ordered array)	$\log N$	N	N	$\log N$	N	N	\checkmark	compareTo()
BST	N	N	N	$\log N$	$\log N$	$\sqrt{ } N$	\checkmark	compareTo()
red-black BST	$\log N$	\checkmark	compareTo()					

Q. Can we do better?
A. Yes, but with different access to the data.

Premature optimization

" Programmers waste enormous amounts of time thinking about, or worrying about, the speed of noncritical parts of their programs, and these attempts at efficiency actually have a strong negative impact when debugging and maintenance are considered.

We should forget about small efficiencies, say about 97\% of the time: premature optimization is the root of all evil.

Yet we should not pass up our opportunities in that critical 3\%. "

, matamemam	\%mutumumpumux	vanutumbw wimme	
The Art of	The Art of	The Art of	The Art of
Computer	Computer	Computer	Computer
Programming	Programming	Programming	Programming
	comen	(inmen	Combinatorial Algorithms
donald e клuth	donald e . Knuth	DONad e. Knvth	dovaid e knuth

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).
Hash function. Method for computing array index from key.

- Computing the hash function.
- Equality test: Method for checking whether two keys are equal.
- Collision resolution: Algorithm and data structure to handle two keys that hash to the same array index.

Classic space-time tradeoff.

- No space limitation: trivial hash function with key as index.
- No time limitation: trivial collision resolution with sequential search.
- Space and time limitations: hashing (the real world).

Hash tables: quiz 1

Which of the following would be a good hash function for U.S. phone numbers to integers between 0 and 999?
A. First three digits.
B. Second three digits.
(609) 867-5309
C. Last three digits.
D. Either B or C.
E. I don't know.

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.

- Efficiently computable.
- Each table index equally likely for each key.
thoroughly researched problem, still problematic in practical applications

Implementing hash code: integers, booleans, and doubles

Java library implementations

> public final class Integer $\{$
private final int value;
public int hashCode()
\{ return value; \}
\}

public final class Boolean

 \{private final boolean value;

public int hashCode()

\{
if (value) return 1231 else return 1237;
\}
\}
public int hashCode()
\{
long bits = doubleToLongBits(value);
return (int) (bits \wedge (bits >>> 32));
$\}$
public final class Double
\{
private final double value;
\} r
\}

Implementing hash code: strings

Treat string of length L as L-digit, base-31 number:

$$
h=s[0] \cdot 31^{L-1}+\ldots+s[L-3] \cdot 31^{2}+s[L-2] \cdot 31^{1}+s[L-1] \cdot 31^{0}
$$

public final class String

\{
private final char[] s;
public int hashCode()
pub
int hash $=0$
for (int $\mathbf{i}=0$; $\mathbf{i}<$ length() ; i++)
hash = s[i] + (31 * hash);
return hash;
\}
$\}$
Java library implementation

Horner's method: only L multiplies/adds to hash string of length L.

String s = "cal1";
s.hashCode():
$3045982=99 \cdot 31^{3}+97 \cdot 31^{2}+108 \cdot 31^{1}+108 \cdot 31^{0}$

$$
=108+31 \cdot(108+31 \cdot(97+31 \cdot(99)))
$$

Implementing hash code: user-defined types

Q. What if hashCode() of string is 0 ? \longleftarrow hashCode() of "pollinating sandboxes" is 0

Hash code design

"Standard" recipe for user-defined types.

- Combine each significant field using the $31 x+y$ rule.
- If field is a primitive type, use wrapper type hashCode().
- If field is null, use 0 .
- If field is a reference type, use hashCode(). \qquad applies rule recursively
- If field is an array, apply to each entry. \qquad or use Arrays. deepHashCode()

In practice. Recipe above works reasonably well; used in Java libraries. In theory. Keys are bitstring; "universal" family of hash functions exist.

> awkward in Java since only
> one (deterministic) hashCode()

Basic rule. Need to use the whole key to compute hash code; consult an expert for state-of-the-art hash codes.

Modular hashing

Hash code. An int between -2^{31} and $2^{31}-1$.
Hash function. An int between 0 and $M-1$ (for use as array index).

$$
\text { typically a prime or power of } 2
$$

```
private int hash(Key key)
{ return key.hashCode() % M; }
```

bug

```
private int hash(Key key)
    { return Math.abs(key.hashCode()) % M; }
1-in-a-billion bug}\mathrm{ hashCode() of "polygenelubricants" is -231
```



```
private int hash(Key key)
    { return (key.hashCode() & 0x7fffffff) % M; }
```

correct

Hash tables: quiz 1

Which of the following is an effective way to map a hashable key to an integer between 0 and $\mathrm{M}-1$?

```
A. private int hash(Key key)
\{ return key.hashCode() \% M; \}
```

B. private int hash(Key key)
\{ return Math.abs(key.hashCode()) \% M; \}
C. Both A and B.

D. Neither A nor B.
E. I don't know.

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an integer between 0 and $M-1$.

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem. Expect two balls in the same bin after $\sim \sqrt{\pi M / 2}$ tosses.

Coupon collector. Expect every bin has ≥ 1 ball after $\sim M \ln M$ tosses.

Load balancing. After M tosses, expect most loaded bin has
$\sim \ln M / \ln \ln M$ balls.

Uniform hashing assumption. Each key is equally likely to hash to an integer between 0 and $M-1$.

Bins and balls. Throw balls uniformly at random into M bins.

Hash value frequencies for words in Tale of Two Cities ($M=97$)
Java's String data uniformly distribute the keys of Tale of Two Cities

Collisions

Collision. Two distinct keys hashing to same index.

- Birthday problem \Rightarrow can't avoid collisions. \longleftarrow (quadratic) amount of memo
- Coupon collector \Rightarrow not too much wasted space.
- Load balancing \Rightarrow no index gets too many collisions.

[^0]
3.4 Hash Tables

- hash functions

- separate chaining

Algorithms

- linear probing
context

Robert Sedgewick | Kevin Wayne http://algs4.cs.princeton.edu

Separate-chaining symbol table

Use an array of $M<N$ linked lists. [H. P. Luhn, IBM 1953]

- Hash: map key to integer i between 0 and $M-1$.
- Insert: put at front of $i^{\text {th }}$ chain (if not already in chain).
- Search: sequential search in $i^{\text {th }}$ chain.
put(L, 11)
separate-chaining hash table $(M=4) \quad$ hash $(L)=3$

Separate-chaining symbol table

Use an array of $M<N$ linked lists. [H. P. Luhn, IBM 1953]

- Hash: map key to integer i between 0 and $M-1$.
- Insert: put at front of $i^{\text {th }}$ chain (if not already in chain).
- Search: sequential search in $i^{\text {th }}$ chain.

separate-chaining hash table ($M=4$)


```
public class SeparateChainingHashST<Key, Value>
{
    private int M = 97; n
```


private static class Node
{
private Object key;
private Object val

```
\(\qquad\)
``` no generic array creation private Object val; \(\longleftarrow\) (declare key and value of type Object) private Node next;
\(\}\)
private int hash(Key key)
\{ return (key.hashCode() \& 0x7fffffff) \% M; \}
public Value get(Key key) \{
int \(i=\) hash(key);
for (Node \(\mathrm{x}=\mathrm{st}[\mathrm{i}] ; \mathrm{x}!=\) null; \(\mathrm{x}=\mathrm{x}\). next) if (key.equals(x.key)) return (Value) x.val; return nul1;
\}
\}
```


## Separate-chaining symbol table: Java implementation

```
public class SeparateChainingHashST<Key, Value
{\mp@code{pub}
 private int M = 97; // number of chains
 private Node[] st = new Node[M]; // array of chains
 private static class Node
 {
 private Object key;
 private Object val;
 private Node next;
 }
```

    private int hash(Key key)
    \{ return (key.hashCode() \& 0x7fffffff) \% M; \}
    public void put(Key key, Value val) \{
        int \(\mathrm{i}=\) hash(key);
        for (Node \(x=s t[i] ; x\) ! \(=\) null; \(x=x . n e x t\) )
            if (key.equals(x.key)) \{ x.val = val; return; \}
        st[i] = new Node(key, val, st[i]);
    \}
    \}

## Resizing in a separate-chaining hash table

Goal. Average length of list $N / M=$ constant.

- Double size of array $M$ when $N / M \geq 8$; halve size of array $M$ when $N / M \leq 2$.
- Note: need to rehash all keys when resizing. $\longleftarrow$ x.hashCode() does not change; but hash $(x)$ can change
before resizing ( $\mathrm{N} / \mathrm{M}=8$ )

after resizing ( $\mathrm{N} / \mathrm{M}=4$ )



## Deletion in a separate-chaining hash table

Q. How to delete a key (and its associated value)?
A. Easy: need to consider only chain containing key.
before deleting C

after deleting C


## Symbol table implementations: summary

implementation	guarantee			average case			ordered ops?	$\begin{gathered} \text { key } \\ \text { interface } \end{gathered}$
	search	insert	delete	search hit	insert	delete		
sequential search (unordered list)	$N$	$N$	$N$	$N$	$N$	$N$		equals()
binary search (ordered array)	$\log N$	$N$	$N$	$\log N$	$N$	$N$	$\checkmark$	compareTo()
BST	$N$	$N$	$N$	$\log N$	$\log N$	$\sqrt{ } N$	$\checkmark$	compareTo()
red-black BST	$\log N$	$\checkmark$	compareTo()					
separate chaining	$N$	$N$	$N$	1*	1*	1*		equals()   hashCode()

## Collision resolution: open addressing

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]

- Maintain keys and values in two parallel arrays.
- When a new key collides, find next empty slot, and put it there.
linear-probing hash table ( $M=16, N=10$ )

keys[]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	P	M			A	C		H	L		E				R	X
	put(K, 14)							K								
	hash(K) = 7							14								
vals[]	11	10			9	5		6	12		13				4	8

## Linear-probing symbol table: Java implementation



## Linear-probing hash table summary

Hash. Map key to integer $i$ between 0 and $M-1$.
Insert. Put at table index $i$ if free; if not try $i+1, i+2$, etc.
Search. Search table index $i$; if occupied but no match, try $i+1, i+2$, etc.

Note. Array size $M$ must be greater than number of key-value pairs $N$.

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 15$

$M=16$


## Linear-probing symbol table: Java implementation

public class LinearProbingHashST<Key, Value>
\{
private int $M=30001$;
private Value[] vals = (Value[]) new Object[M];
private Key[] keys $=($ Key[] $)$ new Object[M];
private int hash(Key key) $\{/ *$ as before */ \}
private Value get(Key key) \{/*prev slide */ \}
public void put(Key key, Value val)
\{
int 1
for (i = hash(key); keys[i] != null; i = (i+1) \% M)
(keys[i].equals(key))
break;
keys[i] = key;
vals[i] = val;
\}
\}

## Clustering

Cluster. A contiguous block of items.
Observation. New keys likely to hash into middle of big clusters.


## Knuth's parking problem

Model. Cars arrive at one-way street with $M$ parking spaces.
Each desires a random space $i$ : if space $i$ is taken, try $i+1, i+2$, etc.
Q. What is mean displacement of a car?


Half-full. With $M / 2$ cars, mean displacement is $\sim 5 / 2$.
Full. With $M$ cars, mean displacement is $\sim \sqrt{\pi M / 8}$.

Key insight. Cannot afford to let linear-probing hash table get too full.

## Analysis of linear probing

Proposition. Under uniform hashing assumption, the average \# of probes in a linear probing hash table of size $M$ that contains $N=\alpha M$ keys is:

$$
\begin{array}{cc}
\sim \frac{1}{2}\left(1+\frac{1}{1-\alpha}\right) & \sim \frac{1}{2}\left(1+\frac{1}{(1-\alpha)^{2}}\right) \\
\text { search hit } & \text { search miss / insert }
\end{array}
$$

Pf.


## Parameters.

- $M$ too large $\Rightarrow$ too many empty array entries.
- $M$ too small $\Rightarrow$ search time blows up.
- Typical choice: $\alpha=N / M \sim 1 / 2$. $\longleftarrow \begin{aligned} & \text { \# probes for search hit is about } 3 / 2 \\ & \text { \# probes for search miss is about } 5 / 2\end{aligned}$


## Resizing in a linear-probing hash table

Goal. Average length of list $N / M \leq 1 / 2$.

- Double size of array $M$ when $N / M \geq 1 / 2$.
- Halve size of array $M$ when $N / M \leq 1 / 8$.
- Need to rehash all keys when resizing.

after resizing



## Deletion in a linear-probing hash table

Q. How to delete a key (and its associated value)?
A. Requires some care: can't just delete array entries.


implementation	guarantee			average case			ordered ops?	$\begin{gathered} \text { key } \\ \text { interface } \end{gathered}$
	search	insert	delete	search hit	insert	delete		
sequential search (unordered list)	$N$	$N$	$N$	$N$	$N$	$N$		equals()
binary search (ordered array)	$\log N$	$N$	$N$	$\log N$	$N$	$N$	$\checkmark$	compareTo()
BST	$N$	$N$	$N$	$\log N$	$\log N$	$\sqrt{ } N$	$\checkmark$	compareTo()
red-black BST	$\log N$	$\checkmark$	compareTo()					
separate chaining	$N$	$N$	$N$	1*	1*	1*		equals()   hashCode()
linear probing	$N$	$N$	$N$	1*	1*	1*		equals()   hashCode()

## ST implementations: summary



## War story: algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker, HFT, ...
A. Surprising situations: denial-of-service attacks.


Real-world exploits. [Crosby-Wallach 2003]

- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem.
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: save files with carefully chosen names.


## Algorithmic complexity attack on Java

Goal. Find family of strings with the same hashCode().
Solution. The base-31 hash code is part of Java's String API.

key	hashCode()	key	hashCode()	key	hashCode()
"Aa"	2112	"AaAaAaAa"	-540425984	"BbaaAaAa"	-540425984
"BB"	2112	"AaAaAabB"	-540425984	"BBAaAaBB"	-540425984
		"AaAabBAa"	-540425984	"BBAaBBAa"	-540425984
		"AaAabBBB"	-540425984	"BBAabBBB"	-540425984
		"AabBAaAa"	-540425984	"ввввAаAа"	-540425984
		"AabBAabB"	-540425984	"ВвввAавB"	-540425984
		"AabBbBAa"	-540425984	"вввввваа"	-540425984
		"Аавввввв"	-540425984	"вввввввв"	-540425984

$2^{N}$ strings of length $2 N$ that hash to same value!

## War story: algorithmic complexity attacks

A Java bug report.

Jan Lieskovsky 2011-11-01 10:13:47 EDT
Description
Julian wallde and Alexander Klink reported that the String. hashcode() hash function is not sufficiently collision resistant. hashcode() value is used in the implementations of HashMap and Hashtable classes:
http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/6/docs/api/java/util/Hashtable.html
A specially-crafted set of keys could trigger hash function collisions, which can degrade performance of Hashmap
or Hashtable by changing hash table operations complexity from an expected or Hashtable by changing hash table operations complexity from an expected/average $O(1)$ to the worst case $O(n)$. Reporters were able to find colliding strings efficiently using equivalent substrings and meet in the middle
techniques.

This problem can be used to start a denial of service attackagainst Java applications that use untrusted input as Hashmap or Hashtable keys. An example of such application is web application server (such as tomcat, see tut \#750527) that may fill hash tables with data from HTTP request (such as GET or POST parameters). A remote of parameters which hash to the same value.
This problem is similar to the issue that was previously reported for and fixed
in e.g. perl:
http://www.cs.rice.edu/~scrosby/hash/CrosbyWallach_UsenixSec 2003 .pdf

## Diversion: one-way hash functions

One-way hash function. "Hard" to find a key that will hash to a desired value (or two keys that hash to same value).

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160, ...
known to be insecure

## String password = args[0];

MessageDigest sha1 = MessageDigest.getInstance("SHA1"); byte[] bytes = sha1.digest(password);
/* prints bytes as hex string */

Applications. Crypto, message digests, passwords, Bitcoin, .... Caveat. Too expensive for use in ST implementations.

## Separate chaining vs. linear probing

Separate chaining.

- Performance degrades gracefully.
- Clustering less sensitive to poorly-designed hash function.


## Linear probing.

- Less wasted space.
- Better cache performance.




## Hash tables vs. balanced search trees

## Hash tables

- Simpler to code.
- No effective alternative for unordered keys.
- Faster for simple keys (a few arithmetic ops versus $\log N$ compares).
- Better system support in Java for String (e.g., cached hash code).


## Balanced search trees

- Stronger performance guarantee.
- Support for ordered ST operations.
- Easier to implement compareTo() correctly than equals() and hashCode().

Java system includes both.

- Red-black BSTs: java.uti1.TreeMap, java.uti1.TreeSet.
- Hash tables: java.util.HashMap, java.util.IdentityHashMap.


## Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. [ separate-chaining variant ]

- Hash to two positions, insert key in shorter of the two chains.
- Reduces expected length of the longest chain to $\sim \lg \ln N$.

Double hashing. [ linear-probing variant ]

- Use linear probing, but skip a variable amount, not just 1 each time.
- Effectively eliminates clustering.
- Can allow table to become nearly full.
- More difficult to implement delete.

Cuckoo hashing. [ linear-probing variant ]

- Hash key to two positions; insert key into either position; if occupied, reinsert displaced key into its alternative position (and recur).
- Constant worst-case time for search.


[^0]:    Challenge. Deal with collisions efficiently.

