2.2 Mergesort

- mergesort
- bottom-up mergesort
- sorting complexity
- divide-and-conquer

Robert Sedgewick \| Kevin Wayne

http://algs4.cs.princeton.edu

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world's computational infrastructure.

- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of $20^{\text {th }}$ century in science and engineering.

Mergesort. [this lecture]

Quicksort. [next lecture]
岳

2.2 Mergesort

- mergesort
- bołtom-uptmergesort

Algorithms

- sorting complexity

- divide-and-conauer

Robert Sedgewick \| Kevin Wayne

Mergesort

Basic plan.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves.

input	M	E	R	G	E	S	0	R	T	E	X	A	M	P	L	E
sort left half	E	E	G	M	O	R	R	S	T	E	X	A	M	P	L	E
sort right half	E	E	G	M	O	R	R	S	A	E	E	L	M	P	T	X
merge results	A	E	E	E	E	G	L	M	M	0	P	R	R	S	T	X

Abstract in-place merge demo

Goal. Given two sorted subarrays $a[1 o]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray $a[1 o]$ to $a[h i]$.

Io
mid
mid+1
hi
a[]
$\underbrace{E \quad G \quad M}_{\text {sorted }}$

Abstract in-place merge demo

Goal. Given two sorted subarrays $a[1 o]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray $a[1 o]$ to a[hi].

Mergesort: Transylvanian-Saxon folk dance

Merging: Java implementation

```
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
```

\{
for (int $k=10 ; k<=h i ; k++)$
aux[k] = $\mathrm{a}[\mathrm{k}] ;$

```
copy
```

 int \(i=1 o, j=m i d+1 ;\)
 for (int k = 1o; k <= hi; k++)
 \{
 if (i > mid) a[k] = aux[j++]; merge
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 e1se \(a[k]=a u x[i++] ;\)
 \}
 \}

	10			i	mid		j			hi
aux []	A	G	L	0	R	H	I	M	S	T

 k
 | a[] | A | G | H | I | L | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Mergesort quiz 1

How many calls to less() does merge() make in the worst case to merge two subarrays of length $N / 2$ into an array of length N. Assume N is even.
A. $\quad N / 2$
B. $\quad N / 2+1$
C. $\quad N-1$
D. N
E. I don't know.

Mergesort: Java implementation

```
public class Merge
{
    private static void merge(...)
    { /* as before */ }
    private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
    {
        if (hi <= lo) return;
        int mid = 1o + (hi - 1o) / 2;
        sort(a, aux, 1o, mid);
        sort(a, aux, mid+1, hi);
        merge(a, aux, lo, mid, hi);
    }
    public static void sort(Comparab7e[] a)
    {
        Comparable[] aux = new Comparable[a.length];
        sort(a, aux, 0, a.length - 1);
    }
}
```

10	mid							hi	
10	11	12	13	14	15	16	17	18	19

Mergesort: trace

Mergesort quiz 2

Which of the following subarray lengths will occur when running mergesort on an array of length 12?
A. $\quad\{1,2,3,4,6,8,12\}$
B. $\{1,2,3,6,12\}$
C. $\{1,2,4,8,12\}$
D. $\{1,3,6,9,12\}$
E. I don't know.

Mergesort: animation

50 random items

A algorithm position
in order
current subarray
not in order

Mergesort: animation

50 reverse-sorted items

A algorithm position in order
current subarray
not in order

Mergesort: empirical analysis

Running time estimates:

- Laptop executes 10^{8} compares/second.
- Supercomputer executes 10^{12} compares/second.

insertion sort (N2)			mergesort (N log N)			
			billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min
super	instant	1 second	1 week	instant	instant	instant

Bottom line. Good algorithms are better than supercomputers.

Mergesort analysis: number of compares

Proposition. Mergesort uses $\leq N \lg N$ compares to sort an array of length N.

Pf sketch. The number of compares $C(N)$ to mergesort an array of length N satisfies the recurrence:

We solve this simpler recurrence, and assume N is a power of 2 :
result holds for all N

$$
D(N)=2 D(N / 2)+N \text {, for } N>1 \text {, with } D(1)=0 .
$$

Divide-and-conquer recurrence

Proposition. If $D(N)$ satisfies $D(N)=2 D(N / 2)+N$ for $N>1$, with $D(1)=0$, then $D(N)=N \lg N$.

Pf by picture. [assuming N is a power of 2]

Mergesort analysis: number of array accesses

Proposition. Mergesort uses $\leq 6 N \lg N$ array accesses to sort an array of length N.

Pf sketch. The number of array accesses $A(N)$ satisfies the recurrence:

$$
A(N) \leq A(\lceil N / 2\rceil)+A(\lfloor N / 2\rfloor)+6 N \text { for } N>1, \text { with } A(1)=0
$$

Key point. Any algorithm with the following structure takes $N \log N$ time:

```
public static void f(int N)
{
    if (N == 0) return;
    f(N/2); «}\mathrm{ solve two problems
    f(N/2); \longleftarrow
    linear(N); « do a linear amount of work
}
```

Notable examples. FFT, hidden-line removal, Kendall-tau distance, ...

Mergesort analysis: memory

Proposition. Mergesort uses extra space proportional to N.
Pf. The array aux[] needs to be of length N for the last merge.

Def. A sorting algorithm is in-place if it uses $\leq c \log N$ extra memory.
Ex. Insertion sort, selection sort, shellsort.

Challenge 1 (not hard). Use aux[] array of length $\sim 1 / 2 N$ instead of N.
Challenge 2 (very hard). In-place merge. [Kronrod 1969]

Mergesort quiz 3

Is our implementation of mergesort stable?
A. Yes.
B. No, but it can be modified to be stable.
C. No, mergesort is inherently unstable.
D. I don't remember what stability means.
E. I don't know.
a sorting algorithm is stable if it preserves the relative order of equal keys
$\begin{array}{lllll}C & A_{1} & B & A_{2} & A_{3}\end{array}$
sorted $\begin{array}{llllll}A_{3} & A_{1} & A_{2} & B & C\end{array}$
not stable

Stability: mergesort

Proposition. Mergesort is stable.

```
public class Merge
{
    private static void merge(...)
    { /* as before */ }
    private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
    {
        if (hi <= 1o) return;
        int mid = 1o + (hi - 1o) / 2;
        sort(a, aux, 1o, mid);
        sort(a, aux, mid+1, hi);
        merge(a, aux, lo, mid, hi);
    }
    public static void sort(Comparab1e[] a)
    { /* as before */ }
}
```

Pf. Suffices to verify that merge operation is stable.

Stability: mergesort

Proposition. Merge operation is stable.

```
private static void merge(...)
{
    for (int k = 1o; k <= hi; k++)
        aux[k] = a[k];
    int i = 1o, j = mid+1;
    for (int k = 1o; k <= hi; k++)
    {
        if (i > mid) a[k] = aux[j++];
        else if (j > hi) a[k] = aux[i++];
        else if (less(aux[j], aux[i])) a[k] = aux[j++];
        else a[k] = aux[i++];
    }
}
```


Pf. Takes from left subarray if equal keys.

Mergesort: practical improvements

Use insertion sort for small subarrays.

- Mergesort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for ≈ 10 items.

```
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
    if (hi <= 1o + CUTOFF - 1)
    {
        Insertion.sort(a, lo, hi);
        return;
    }
    int mid = 1o + (hi - 1o) / 2;
    sort (a, aux, lo, mid);
    sort (a, aux, mid+1, hi);
    merge(a, aux, lo, mid, hi);
}
```


Mergesort with cutoff to insertion sort: visualization

Mergesort: practical improvements

Stop if already sorted.

- Is largest item in first half \leq smallest item in second half?
- Helps for partially-ordered arrays.

```
A B C D E F G H I (J) M) N O P Q R S T U V
A B C D E F G H I J M N O P Q R S T U V
```

```
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
    if (hi <= lo) return;
    int mid = 10 + (hi - 1o) / 2;
    sort (a, aux, lo, mid);
    sort (a, aux, mid+1, hi);
    if (!less(a[mid+1], a[mid])) return;
    merge(a, aux, lo, mid, hi);
}
```


Mergesort: practical improvements

Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input and auxiliary array in each recursive call.

```
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
    int i = 1o, j = mid+1;
    for (int k = 1o; k <= hi; k++)
    {
        if (i > mid) aux[k] = a[j++];
        else if (j > hi) aux[k] = a[i++];
        else if (less(a[j], a[i])) aux[k] = a[j++];
        « merge from a[] to aux[]
    }
}
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
    if (hi <= lo) return;
    int mid = 10 + (hi - 1o) / 2;
    sort (aux, a, lo, mid);
    sort (aux, a, mid+1, hi);
    merge(a, aux, lo, mid, hi);
}
    switch roles of aux[] and a []
```


Java 6 system sort

Basic algorithm for sorting objects $=$ mergesort.

- Cutoff to insertion sort $=7$.
- Stop-if-already-sorted test.
- Eliminate-the-copy-to-the-auxiliary-array trick.

Arrays.sort(a)

http://hg.openjdk.java.net/jdk6/jdk6/jdk/file/tip/src/share/classes/java/util/Arrays.java

2.2 Mergesort

Mergesort

- bottom-up mergesort

sorting complexity

- dividetand-conquer

Robert Sedgewick \| Kevin Wayne

Bottom-up mergesort

Basic plan.

- Pass through array, merging subarrays of size 1 .
- Repeat for subarrays of size $2,4,8, \ldots$.

```
sz = 1
merge(a, aux, 0, 0, 1)
merge(a, aux, 2, 2, 3)
merge(a, aux, 4, 4, 5)
merge(a, aux, 6, 6, 7)
merge(a, aux, 8, 8, 9)
merge(a, aux, 10, 10, 11)
merge(a, aux, 12, 12, 13)
merge(a, aux, 14, 14, 15)
sz = 2
merge(a, aux, 0, 1, 3)
merge(a, aux, 4, 5, 7)
merge(a, aux, 8, 9, 11)
merge(a, aux, 12, 13, 15)
sz=4
merge(a, aux, 0, 3, 7)
merge(a, aux, 8, 11, 15)
sz=8
merge(a, aux, 0, 7, 15)
```


Bottom-up mergesort: Java implementation

```
public class MergeBU
{
    private static void merge(...)
    { /* as before */ }
    public static void sort(Comparab7e[] a)
    {
        int N = a.length;
        Comparable[] aux = new Comparable[N];
        for (int sz = 1; sz < N; sz = sz+sz)
        for (int lo = 0; 1o < N-sz; 1o += sz+sz)
            merge(a, aux, 1o, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
    }
}
```

Bottom line. Simple and non-recursive version of mergesort.

Mergesort: visualizations

||||||||||||||||||||||||||||||||||.....||1.|||||||||||||||||||||||||||.|||||..|...||||||||||||||||||||||||||||||||||||.....||||||||||||||||||....||||||||||||||.||...|
|||||||||||||||||||||||||||||||||.....|||||||||||||||||........|||||||||||||||

top-down mergesort (cutoff =12)

 ...|||||||||....||||||||...|||||||||....u||||||....||||||||....un||||||||||||||||..||||.||....|

||||||||||||||||||......||||||||||||||||.....n||||||||||||||||.......||||||||||||||||

Mergesort quiz 4

Which is faster in practice: top-down mergesort or bottom-up mergesort?
A. Top-down (recursive) mergesort.
B. Bottom-up (nonrecursive) mergesort.
C. About the same.
D. I don't know.

Natural mergesort

Idea. Exploit pre-existing order by identifying naturally-occurring runs.

input													
1	5	10	16	3	4	23	9	13	2	7	8	12	14

second run
merge two runs
$\begin{array}{llllllllllllll}1 & 3 & 4 & 5 & 10 & 16 & 23 & 9 & 13 & 2 & 7 & 8 & 12 & 14\end{array}$

Tradeoff. Fewer passes vs. extra compares per pass to identify runs.

Timsort

- Natural mergesort.
- Use binary insertion sort to make initial runs (if needed).
- A few more clever optimizations.

Intro

Tim Peters

This describes an adaptive, stable, natural mergesort, modestly called timsort (hey, I earned it <wink>). It has supernatural performance on many kinds of partially ordered arrays (less than $1 \mathrm{~g}(\mathrm{~N}!$) comparisons needed, and as few as $N-1$), yet as fast as Python's previous highly tuned samplesort hybrid on random arrays.

In a nutshell, the main routine marches over the array once, left to right, alternately identifying the next run, then merging it into the previous runs "intelligently". Everything else is complication for speed, and some hard-won measure of memory efficiency.

Consequence. Linear time on many arrays with pre-existing order.
Now widely used. Python, Java 7, GNU Octave, Android,

Commercial break

https:/ / www.youtube.com/watch?v=tSEHDBSynVo

2.2 Mergesort

Mergesort

- bołtom-uptmergesort
- sorting complexity
-divide-and=conquer

Robert Sedgewick \| Kevin Wayne

Complexity of sorting

Computational complexity. Framework to study efficiency of algorithms for solving a particular problem X.

Model of computation. Allowable operations.
Cost model. Operation counts.
Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best possible cost guarantee for X.
lower bound ~ upper bound

```
model of computation decision tree « can access information
                                    only through compares
    (e.g., Java Comparable framework)
    upper bound }~N\operatorname{lg}N\mathrm{ from mergesort
    lower bound ?
    optimal algorithm
    ?
```


Decision tree (for 3 distinct keys a, b, and c)

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least $\lg (N!) \sim N \lg N$ compares in the worst-case.

Pf.

- Assume array consists of N distinct values a_{1} through a_{N}.
- Worst case dictated by height h of decision tree.
- Binary tree of height h has at most 2^{h} leaves.
- N ! different orderings \Rightarrow at least N ! leaves.

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least $\lg (N!) \sim N \lg N$ compares in the worst-case.

Pf.

- Assume array consists of N distinct values a_{1} through a_{N}.
- Worst case dictated by height h of decision tree.
- Binary tree of height h has at most 2^{h} leaves.
- N ! different orderings \Rightarrow at least N ! leaves.

$$
\begin{aligned}
& 2^{h} \geq \text { \# leaves } \geq N! \\
& \Rightarrow h \geq \lg (N!) \underset{\sim}{\sim} N \lg N \\
& \text { Stirling's formula }
\end{aligned}
$$

Complexity of sorting

Model of computation. Allowable operations.
Cost model. Operation count(s).
Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best possible cost guarantee for X.

model of computation	decision tree
cost model	\# compares
upper bound	$\sim N \lg N$
lower bound	$\sim N \lg N$
optimal algorithm	
mergesort	

First goal of algorithm design: optimal algorithms.

Complexity results in context

Compares? Mergesort is optimal with respect to number compares. Space? Mergesort is not optimal with respect to space usage.

Lessons. Use theory as a guide.
Ex. Design sorting algorithm that guarantees $\sim 1 / 2 N \lg N$ compares?
Ex. Design sorting algorithm that is both time- and space-optimal?

Complexity results in context (continued)

Lower bound may not hold if the algorithm can take advantage of:

- The initial order of the input.

Ex: insertion sort requires only a linear number of compares on partially-sorted arrays.

- The distribution of key values.

Ex: 3-way quicksort requires only a linear number of compares on arrays with a constant number of distinct keys. [stay tuned]

- The representation of the keys.

Ex: radix sorts require no key compares - they access the data via character/digit compares.

Sorting summary

	inplace?	stable?	best	average	worst	remarks
selection	\checkmark		$1 / 2 N^{2}$	$1 / 2 N^{2}$	$1 / 2 N^{2}$	N exchanges
insertion	\checkmark	\checkmark	N	$1 / 4 N^{2}$	$1 / 2 N^{2}$	use for small N or partially ordered
shell	\checkmark		$N \log _{3} N$?	$c N^{3 / 2}$	tight code; subquadratic
merge		\checkmark	$1 / 2 N \lg N$	$N \lg N$	$N \lg N$	$N \log N$ guarantee; stable
timsort		\checkmark	N	$N \lg N$	$N \lg N$	improves mergesort when preexisting order
?	\checkmark	\checkmark	N	$N \lg N$	$N \lg N$	holy sorting grail

2.2 Mergesort

Mergesort

- bottom-up mergesort

Algorithms

- sorting complexity

- divide-and-conquer

Robert Sedgewick I Kevin Wayne

INTERVIEW QUESTION: SHUFFLE A LINKED LST

Problem. Given a singly-linked list, rearrange its nodes uniformly at random. Assumption. Access to a perfect random-number generator.
all N! permutations equally likely

Version 1. Linear time, linear extra space.
Version 2. Linearithmic time, logarithmic or constant extra space.

