

1.4 ANALYsis of Algorithms

- introduction
- observations
- mathematical models
- order-of-growth classifications
- memory

Robert Sedgewick \| Kevin Wayne

1.4 ANALYSIS OF Algorithms

- introduction
- observations
- mathematical models
- order-of-growth classificictions
) memory
http://algs4.cs.princeton.edu

Cast of characters

Programmer needs to develop a working solution.

Client wants to solve problem efficiently.

Theoretician seeks to understand.

Student (you) might play any or all of these roles someday.

Running time

" As soon as an Analytical Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will then arise-By what course of calculation can these results be arrived at by the machine in the shortest time?" - Charles Babbage (1864)

Reasons to analyze algorithms

Predict performance.
Compare algorithms.
Provide guarantees.

Understand theoretical basis. \begin{tabular}{l}

this course
(Cos 226)

theory of algorithms
(Cos 423)

\hline
\end{tabular}

Primary practical reason: avoid performance bugs.

暗
client gets poor performance because programmer did not understand performance characteristics

Another algorithmic success story

Discrete Fourier transform.

- Express signal as weighted sum of sines and cosines.
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: N^{2} steps.
- FFT algorithm: $N \log N$ steps, enables new technology.

An algorithmic success story

N -body simulation.

- Simulate gravitational interactions among N bodies.
- Applications: cosmology, fluid dynamics, semiconductors, ...
- Brute force: N^{2} steps.
- Barnes-Hut algorithm: $N \log N$ steps, enables new research.

The challenge

Q. Will my program be able to solve a large practical input?
Why is my program so slow?

Why does it run out of memory ?

Scientific method applied to the analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

- Observe some feature of the natural world.
- Hypothesize a model that is consistent with the observations.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.

- Experiments must be reproducible.
- Hypotheses must be falsifiable.

Feature of the natural world. Computer itself.

Robert Sedgewick 1 Kevin Wayne http://algs4.cs.princeton.edu

1.4 ANALYsis of Algorithms

Vintroduction
- observations

-mathematical models

- order-of-growth classifications
- memory

3-SUM: brute-force algorithm

```
public class ThreeSum
{
    public static int count(int[] a)
    {
        int N = a.length;
        int count = 0;
        for (int i = 0; i < N; i++)
            for (int j = i+1; j < N; j++)
                for (int k = j+1; k < N; k++)
                    if (a[i] + a[j] + a[k] == 0)
                count++;
        return count;
    }
    public static void main(String[] args)
    {
        In in = new In(args[0]);
        int[] a = in.readAllInts();
        StdOut.println(count(a));
    }
}
```


Measuring the running time

Q. How to time a program?
A. Manual.

70
\% java ThreeSum 2Kints.txt

\% java ThreeSum 4Kints. txt

ick tick tick tiok tick tiok tikt tick
ick tick tiok tiok tiok tiok tick tick

Ick thick tith thick tith thisk tith tick
lock tick tick tiok tick tick tick tick

4039

Empirical analysis

Run the program for various input sizes and measure running time.

Measuring the running time

Q. How to time a program?
A. Automatic.

public class Stopwatch	(part of stdlib.jar)
Stopwatch()	create a new stopwatch
double	elapsedTime()

public static void main(String[] args)
public static void main(String[] args)
{
{
In in = new In(args[0]);
In in = new In(args[0]);
int[] a = in.readAl1Ints();
int[] a = in.readAl1Ints();
Stopwatch stopwatch = new Stopwatch();
Stopwatch stopwatch = new Stopwatch();
StdOut.println(ThreeSum.count(a));
StdOut.println(ThreeSum.count(a));
doub7e time = stopwatch.elapsedTime()
doub7e time = stopwatch.elapsedTime()
StdOut.println("elapsed time = " + time);
StdOut.println("elapsed time = " + time);
}
}

Empirical analysis

Run the program for various input sizes and measure running time.

N	time (seconds) +
250	0.0
500	0.0
1,000	0.1
2,000	0.8
4,000	6.4
8,000	51.1
16,000	$?$

† on some particular machine

Data analysis

Standard plot. Plot running time $T(N)$ vs. input size N.

Prediction and validation

Hypothesis. The running time is about $1.006 \times 10^{-10} \times N N^{2.999}$ seconds.

Predictions.

- 51.0 seconds for $N=8,000$.
- 408.1 seconds for $N=16,000$.

Observations.

N	time (seconds) \dagger
8,000	51.1
8,000	51.0
8,000	51.1
16,000	410.8
validates hypothesis!	

Data analysis

Log-log plot. Plot running time $T(N)$ vs. input size N using log-log scale.

Regression. Fit straight line through data points: $a N^{b}$. slope Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

N	time (seconds)	ratio	Ig ratio	$T(N) \quad a N^{b}$
250	0.0		-	$\overline{T(N / 2)}=\overline{a(N / 2)^{b}}$
500	0.0	4.8	2.3	$=2^{\text {b }}$
1,000	0.1	6.9	2.8	
2,000	0.8	7.7	2.9	$\lg (6.4 / 0.8)=3.0$
4,000	6.4	8.0	3.0	
8,000	51.1	8.0	3.0	
seems to converge to a constant $\mathrm{b} \approx 3$				

Hypothesis. Running time is about $a N^{b}$ with $b=\lg$ ratio.
Caveat. Cannot identify logarithmic factors with doubling hypothesis.

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.
Q. How to estimate a (assuming we know b) ?
A. Run the program (for a sufficient large value of N) and solve for a.

N	time (seconds) \dagger	
8,000	51.1	
8,000	51.0	$\Rightarrow a=0.998 \times 10-10$
8,000	51.1	

Hypothesis. Running time is about $0.998 \times 10^{-10} \times N^{3}$ seconds.
almost identical hypothesis
to one obtained via regression

Experimental algorithmics

System independent effects.

- Algorithm. determines exponent b
- Input data.
in power law $a N^{b}$

System dependent effects.
determines constant a in power law $a N^{b}$

- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other apps, ...

Bad news. Sometimes difficult to get precise measurements. Good news. Much easier and cheaper than other sciences.

Analysis of algorithms quiz 1

Estimate the running time to solve a problem of size $\mathbf{N}=96,000$.
A. 39 seconds.
B. 52 seconds.
C. 117 seconds.
D. 350 seconds.
E. I don't know.

N	time (seconds) +O
1000	0.02
2000	0.05
4,000	0.20
8,000	0.81
16,000	3.25
32,000	13.00

An aside

Algorithmic experiments are virtually free by comparison with other sciences.

Chemistry (1 experiment)

Computer Science
(1 million experiments)

Physics (1 experiment)

Bottom line. No excuse for not running experiments to understand costs.

Mathematical models for running time

Total running time: sum of cost \times frequency for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.

1.4 Analysis of Algorithms

```
Vinfroduction
- observations
- mathematical models
vorder-of-growth dlassifications
- memory
```

muncuscmak	mate	THE CLASSIC WORK NEWIY UPDATED AND REVISED		
The Art of Computer Programming VOLUME 1 Fundamenta Third Edition Algorithms	The Art of Computer Programming VOLUME 2 Third Edition	The Art of Computer Programming \qquad Second Edition	The Art of Computer Programming VOLUME 4A Combinatorial Algorithms Part 1 Part	
donald e knuth	Donald e knuth	Donald e. Knuth	Donald e. Knuth	Donald Knuth 1974 Turing Award

In principle, accurate mathematical models are available.

Example: 2-SUM

Q. How many instructions as a function of input size N ?
for (int $\mathbf{i}=0 ; i<N ; i++$)
for (int $j=i+1 ; j<N ; j++$)
if $(a[i]+a[j]==0)$
count++;
$0+1+2+\ldots+(N-1)=\frac{1}{2} N(N-1)$

Pf. [Gauss]

$$
\begin{aligned}
& T(N)=0+1+\ldots+(N-2)+(N-1)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad T(N)=N(N-1) / 2
\end{aligned}
$$

Example: 2-SUM

Q. How many instructions as a function of input size N ?

Simplification 1: cost model

Cost model. Use some basic operation as a proxy for running time.

```
int count = 0;
for (int i = 0; i < N; i++)
```

 for (int \(j=i+1 ; j<N ; j++\))
 if \((a[i]+a[j]==0)\)
 count++;
 variable declaration
assignment statement

> less than compare
equal to compare

array access

1/10
increment
1/10
\square
 $2 N(N+1)$ to N^{2} optimize any array accesses away!)

Simplifying the calculations

> "It is convenient to have a measure of the amount of work involved in a computing process, even though it be a very crude one. We may count up the number of times that various elementary operations are applied in the whole process and then given them various weights. We might, for instance, count the number of additions, subtractions, multiplications, divisions, recording of numbers, and extractions of figures from tables. In the case of computing with matrices most of the work consists of multiplications and writing down numbers, and we shall therefore only attempt to count the number of multiplications and recordings." - Alan Turing

Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care

Ex 1.	$1 / 6 N^{3}+20 N+16$	$\sim 1 / 6 N^{3}$
Ex 2.	$1 / 6 N^{3}+100 N^{4 / 3}+56$	$\sim 1 / 6 N^{3}$
Ex 3.	$1 / 6 N^{3}-\underbrace{1 / 2 N^{2}+1 / 3 N}_{$ discard lower-order terms $}$	$\sim 1 / 6 N^{3}$
	(e.g., $N=1000: 166.67$ million vs. 166.17 million)	

Leading-term approximation
(e.g., $N=1000: 166.67$ million vs. 166.17 million)

Technical definition. $f(N) \sim g(N)$ means $\lim _{N \rightarrow \infty} \frac{f(N)}{g(N)}=1$

Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care

operation	frequency	tilde notation
variable declaration	$N+2$	$\sim N$
assignment statement	$N+2$	$\sim N$
less than compare	$1 / 2(N+1)(N+2)$	$\sim 1 / 2 N^{2}$
equal to compare	$1 / 2 N(N-1)$	$\sim 1 / 2 N^{2}$
array access	$N(N-1)$	$\sim N^{2}$
increment	$1 / 2 N(N+1)$ to N^{2}	$\sim 1 / 2 N^{2}$ to $\sim N^{2}$

Example: 3-SUM

Q. Approximately how many array accesses as a function of input size N ?

Example: 2-SUM

Q. Approximately how many array accesses as a function of input size N ?

```
int count = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        if (a[i] + a[j] == 0)
        count++;
                            0+1+2+\ldots+(N-1)}={\frac{1}{2}N(N-1
```

A. $\sim N^{2}$ array accesses.

Bottom line. Use cost model and tilde notation to simplify counts.

Estimating a discrete sum

Q. How to estimate a discrete sum?

A1. Take a discrete mathematics course (COS 340).

Bottom line. Use cost model and tilde notation to simplify counts.

Estimating a discrete sum

Q. How to estimate a discrete sum?

A2. Replace the sum with an integral, and use calculus!

Ex 1. $1+2+\ldots+N$.

$$
\begin{aligned}
& \sum_{i=1}^{N} i \sim \int_{x=1}^{N} x d x \sim \frac{1}{2} N^{2} \\
& \sum_{i=1}^{N} \frac{1}{i} \sim \int_{x=1}^{N} \frac{1}{x} d x=\ln N
\end{aligned}
$$

Ex 2. $1+1 / 2+1 / 3+\ldots+1 / N$

Ex 3. 3-sum triple loop.

$$
\sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=j}^{N} 1 \sim \int_{x=1}^{N} \int_{y=x}^{N} \int_{z=y}^{N} d z d y d x \sim \frac{1}{6} N^{3}
$$

Ex 4. $1+1 / 2+1 / 4+1 / 8+\ldots \quad \int_{x=0}^{\infty}\left(\frac{1}{2}\right)^{x} d x=\frac{1}{\ln 2} \approx 1.4427$

$$
\sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i}=2 \underset{\text { doesn't always work! }}{\text { integral trick }}
$$

Estimating a discrete sum

Q. How to estimate a discrete sum?

A3. Use Maple or Wolfram Alpha.

WolframAlphá Pro

$\operatorname{sum}(\operatorname{sum}(\operatorname{sum}(1, k=j+1 . . N), j=i+1 . . N), i=1 . . N)$.
-買-田-

$$
\begin{aligned}
& \text { Sum: } \\
& \sum_{i=1}^{N}\left(\sum_{j=i+1}^{N}\left(\sum_{k=j+1}^{N} 1\right)\right)=\frac{1}{6} N\left(N^{2}-3 N+2\right)
\end{aligned}
$$

wolframalpha.com

```
[wayne:nobe1.princeton.edu] > maple15
|\^/ Map7e 15 (X86 64 LINUX)
- \\\ | |//_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2011
    MAPLE /- Al7 rights reserved. Maple is a trademark of
    MMPLE }\quad\begin{array}{l}{\mathrm{ All rights reserved}}\\{\mathrm{ Waterloo Maple Inc.}}
> factor(sum(sum(sum(1, k=j+1..N), j = i+1..N), i = 1..N));
```

$$
N(N-1)(N-2)
$$

Mathematical models for running time

In principle, accurate mathematical models are available.

In practice,

- Formulas can be complicated.
- Advanced mathematics might be required.
- Exact models best left for experts.

Bottom line. We use approximate models in this course: $T(N) \sim c N^{3}$.

Analysis of algorithms quiz 2

How many array accesses does the following code fragment make as a function of N ?

```
int count = 0
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        for (int k = 1; k < N; k = k*2)
            if (a[i] + a[j] >= a[k])
                count++;
```

A. $\sim N^{2} \lg N$
B. $\sim 3 / 2 N^{2} \lg N$
C. $\sim 1 / 2 N^{3}$
D. $\sim 3 / 2 N^{3}$
E. I don't know.

Common order-of-growth classifications

Good news. The set of functions

$1, \log N, N, N \log N, N^{2}, N^{3}$, and 2^{N}
suffices to describe the order of growth of most common algorithms.

Common order-of-growth classifications

Definition. If $f(N) \sim c g(N)$ for some constant $c>0$, then the order of growth of $f(N)$ is $g(N)$.

- Ignores leading coefficient.
- Ignores lower-order terms.

Ex. The order of growth of the running time of this code is N^{3}.

```
int count = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        for (int k = j+1; k < N; k++)
            if (a[i] + a[j] + a[k] == 0)
                count++;
```

Typical usage. Mathematical analysis of running times.

> where leading coefficient depends on machine, compiler, JVM, ...

Common order-of-growth classifications

order of growth	name	typical code framework	description	example	$T(2 N) / T(N)$
1	constant	$\mathrm{a}=\mathrm{b}+\mathrm{c}$;	statement	add two numbers	1
$\log N$	logarithmic	$\begin{aligned} & \text { while }(N>1) \\ & \left\{\begin{array}{l} \text { N }=N / 2 ; \end{array} \quad \ldots\right. \end{aligned}$	divide in half	binary search	~ 1
N	linear	for (int $\mathbf{i}=0 ; i<N ; i++$) \{ ... \}	single loop	find the maximum	2
$N \log N$	linearithmic	see mergesort lecture	divide and conquer	mergesort	~ 2
N^{2}	quadratic	for (int i $=0$; $\mathbf{i}<\mathrm{N}$; $\boldsymbol{i}++$) for (int $\underset{\{ }{\mathrm{j}}=0 ; \mathrm{j}_{\}}<\mathrm{N} ; \mathrm{j}++$)	double loop	check all pairs	4
N^{3}	cubic	```for (int i = 0; i \(<\mathbf{N} ; \mathbf{i + +}\)) for (int j \(=0\); \(\mathrm{j}<\mathrm{N}\); j++) for (int k = 0; k < N; k++) \{ ... \}```	$\begin{aligned} & \text { triple } \\ & \text { loop } \end{aligned}$	check all triples	8
2^{N}	exponential	see combinatorial search lecture	exhaustive search	check all subsets	$T(N)$

Binary search

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.

6	13	14	25	33	43	51	53	64	72	84	93	95	96
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Binary search: Java implementation

Invariant. If key appears in array $a[]$, then $a[1 o] \leq k e y \leq a[h i]$.

```
public static int binarySearch(int[] a, int key)
{
    int lo = 0, hi = a.length - 1;
    while (lo <= hi) why not mid = (lo+hi)/2?
    {
            int mid = 10 + (hi - 1o) / 2;
            if (key < a[mid]) hi = mid - 1;
            else if (key > a[mid]) 10 = mid + 1;
            else return mid;
    }
    return -1;
}
```


Binary search: implementation

Trivial to implement?

- First binary search published in 1946.
- First bug-free one in 1962.
- Bug in Java's Arrays.binarySearch() discovered in 2006.

Extra, Extra - Read All About It: Nearly All Binary Searches and Mergesorts are Broken

Posted by Joshua Bloch, Software Engineer

I remember vividly Jon Bentley's first Algorithms lecture at CMU, where he asked all of us incoming Ph.D. students to write a binary search, and then dissected one of our implementations in front of the class. Of course it was broken, as were most of our implementations. This made a real impression on me, as did the treatment of this material in his wonderful Programming Pearls (Addison-Wesley, 1986; Second Edition, 2000). The key lesson was to carefully consider the invariants in your programs.

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

Binary search: mathematical analysis

Proposition. Binary search uses at most $1+\lg N$ key compares to search in a sorted array of size N.

Def. $T(N)=$ \# key compares to binary search a sorted subarray of size $\leq N$.

Binary search recurrence. $T(N) \leq T(N / 2)+1$ for $N>1$, with $T(1)=1$.

$$
\begin{array}{ll}
\uparrow & \uparrow \\
\text { left or right half } & \begin{array}{l}
\text { possible to implement with one } \\
\text { (floored division) }
\end{array} \\
\text { 2-way compare (instead of 3-way) }
\end{array}
$$

Pf sketch. [assume N is a power of 2]

$$
\begin{array}{rlrl}
T(N) & \leq T(N / 2)+1 & & \text { [given] } \\
& \leq T(N / 4)+1+1 & & \text { [apply recurrence to first term] } \\
& \leq T(N / 8)+1+1+1 & & \text { [apply recurrence to first term] } \\
& \vdots & & \\
& \leq T(N / N)+1+1+\ldots+1 & \text { [stop applying, } T(1)=1 \text {] } \\
& =1+\lg N & \lg N &
\end{array}
$$

THE 3-SUM PROBLEM

3-SUM. Given N distinct integers, find three such that $a+b+c=0$.

Version 0. N^{3} time, N space.
Version 1. $N^{2} \log N$ time, N space.
Version 2. N^{2} time, N space.

Note. For full credit, running time should be worst case.

Comparing programs

Hypothesis. The sorting-based $N^{2} \log N$ algorithm for 3-Sum is significantly faster in practice than the brute-force N^{3} algorithm.

N	time (seconds)	N	time (seconds)			
1,000	0.1		1,000			
2,000	0.8	2,000	0.14			
4,000	6.4	4,000	0.18			
8,000	51.1	8,000	0.96			
ThreeSum.java					16,000	3.67
		32,000	14.88			

Guiding principle. Typically, better order of growth \Rightarrow faster in practice.

Basics

Bit. 0 or $1 . \quad$ NIST most computer scientists
Byte. 8 bits. $\downarrow \downarrow$
Megabyte (MB). 1 million or 2^{20} bytes.
Gigabyte (GB). 1 billion or 2^{30} bytes.

64-bit machine. We assume a 64 -bit machine with 8 -byte pointers.

1.4 ANALYsis of Algorithms

- introduction
- observations
- mathematical models
vorder-of-growth classifications
- memory

Robert Sedgewick \| Kevin Wayne

Typical memory usage for primitive types and arrays

type	bytes	type	bytes
boolean	1	char []	$2 N+24$
byte	1	int[]	$4 N+24$
char	2	double[]	$8 N+24$
int	4	one-dimensional arrays	
float	4		
long	8		
double	8	type	bytes
primitive types		char [] []	$\sim 2 M N$
		int[][]	$\sim 4 M N$
		doub7e[][]	$\sim 8 \mathrm{MN}$

two-dimensional arrays

Typical memory usage for objects in Java

Object overhead. 16 bytes.
Reference. 8 bytes.
Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.
public class Date
public class Date
{
{
private int day;
private int day;
private int month
private int month
private int year;
private int year;
3
3

16 bytes (object overhead)
4 bytes (int)
4 bytes (int)
4 bytes (int)
4 bytes (padding)
32 bytes

Typical memory usage summary

Total memory usage for a data type value:

- Primitive type: 4 bytes for int, 8 bytes for double, ...
- Object reference: 8 bytes.
- Array: 24 bytes + memory for each array entry.
- Object: 16 bytes + memory for each instance variable.
- Padding: round up to multiple of 8 bytes.
+8 extra bytes per inner class object (for reference to enclosing class)

Note. Depending on application, we may want to count memory for any referenced objects (recursively).

Analysis of algorithms quiz 3

How much memory does a WeightedQuickUnionUF use as a function of N ?

A. $\sim 4 N$ bytes
B. $\sim 8 N$ bytes
C. $\sim 4 N^{2}$ bytes
D. $\sim 8 N^{2}$ bytes
E. I don't know.

```
public class WeightedQuickUnionUF
pub
    private int[] parent;
    private int[] size;
    private int count;
    pub1ic WeightedQuickUnionUF(int N)
    {
        parent = new int[N];
        size = new int[N];
        count = 0;
        for (int i = 0; i < N; i++)
            parent[i] = i;
        for (int i = 0; i < N; i++)
            size[i] = 1;
    }
}
```


Turning the crank: summary

Empirical analysis.

- Execute program to perform experiments.
- Assume power law.
- Formulate a hypothesis for running time.
- Model enables us to make predictions.

Mathematical analysis.

- Analyze algorithm to count frequency of operations.
- Use tilde notation to simplify analysis.
- Model enables us to explain behavior.

Scientific method.

- Mathematical model is independent of a particular system; applies to machines not yet built.
- Empirical analysis is necessary to validate mathematical models and to make predictions.

$$
\sum_{h=0}^{\lfloor\lg N\rfloor}\left\lceil N / 2^{h+1}\right\rceil h \sim N
$$

