
COS 226 Algorithms and Data Structures Spring 2008

Midterm

This test has 8 questions worth a total of 80 points. You have 80 minutes. The exam is closed
book, except that you are allowed to use a one page cheatsheet. No calculators or other electronic
devices are permitted. Give your answers and show your work in the space provided. Write out
and sign the Honor Code pledge before turning in the test.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Problem Score Problem Score
1 5
2 6
3 7
4 8

Sub 1 Sub 2

Total

Name:

Login ID:

Precept: P01 12:30 Moses
P01A 12:30 Szymon
P02 1:30 Szymon
P02A 1:30 Moses
P03 3:30 Nadia

1

2 PRINCETON UNIVERSITY

1. 8 sorting algorithms. (16 points)

The column on the left is the original input of strings to be sorted; the column on the right
are the string in sorted order; the other columns are the contents at some intermediate step
during one of the 8 sorting algorithms listed below. Match up each algorithm by writing its
number under the corresponding column. Use each number exactly once.

null hash fifo list type find hash find exch exch
type heap next heap tree hash null hash fifo fifo
null fifo null fifo swim heap null heap find find
hash link hash exch swap lifo type link hash hash
null list null next push link heap list heap heap
heap next heap leaf swap list link null leaf leaf
sort find exch find swap null null null left left
link lifo link hash null null sort null less less
list exch list node list null find push lifo lifo
push leaf less left path null list sort link link
find less find less less null push swap list list
swap left left lifo null push swap type next next
null node node null sink root lifo null null node
null null leaf null null sort null null null null
root null lifo null sort swap null root root null
lifo null null link null type root lifo null null
swap null swap null link exch leaf swap swap null
leaf null null push leaf fifo path leaf null null
tree null tree root hash leaf swap tree tree null
path null path null null left tree path path null
node null null null node less exch node node null
left path swap sink left next left left sort path
less tree push sort find node less less push push
exch swap sort null exch null node exch null root
null sink null null null null null null null sink
sink swim sink swap heap null null sink sink sort
swim root swim swim null path sink swim swim swap
null swap null path null sink swim null null swap
next swap type swap next swap fifo next swap swap
swap push swap type root swap next swap swap swim
fifo sort null tree fifo swim null fifo type tree
null type root swap lifo tree swap null null type
---- ---- ---- ---- ---- ---- ---- ---- ---- ----
0 1

(0) Original input

(1) Sorted

(2) Selection sort

(3) Insertion sort

(4) Shellsort
(13-4-1 increments)

(5) Mergesort
(top-down)

(6) Mergesort
(bottom-up)

(7) Quicksort
(standard, no shuffle)

(8) Quicksort
(3-way, no shuffle)

(9) Heapsort

COS 226 MIDTERM, SPRING 2008 3

2. More sorting. (8 points)

(a) Modern computers have memory caches, which speed up reads and writes if they are
to locations near recently-accessed memory. This makes sequential access to memory
faster, in general, than random access. Circle the sorting algorithm below that you
would expect to benefit least from caching?

insertion sort mergesort quicksort heapsort

(b) You are managing the accounts for BigIBankCo, and have an array of customers together
with their balances. You would like to rearrange the array such that the richest customers
(those with balances greater than $1 million) are grouped at the beginning, with everyone
else at the end.
Describe an algorithm for performing this task in linear time, and using only constant
extra memory. Adhering to the spirit of code reuse, adapt an algorithm from class and
describe only the changes you would make.

3. Hard problem identification. (10 points)

You are applying for a job at a new software technology company. Your interviewer asks you
to identify the following tasks as easy (E) or impossible (I).

−−− Build a balanced BST containing N keys using ∼ 8N compares
(where the array of keys are given to you in ascending order).

−−− Build a balanced BST containing N keys using ∼ 8N compares
(where the array of keys are given to you in arbitrary order).

−−− Build a binary heap containing N keys using ∼ 2N compares
(where the array of keys are given to you in arbitrary order).

−−− Build a BST containing N keys that has height at most 1
2 lg N .

−−− Design a priority queue that does insert and delete-max in ∼ lg lg N compares per
operation, where N is the number of items in the data structure.

4 PRINCETON UNIVERSITY

4. Priority queues. (10 points)

Consider the following code fragment.

MaxPQ<Integer> pq = new MaxPQ<Integer>();
int N = a.length;
for (int i = 0; i < N; i++) {

pq.insert(a[i]);
if (pq.size() > k) pq.delMax(); /* MARK */

}
for (int i = 0; i < k; i++)

System.out.println(pq.delMax());

Assume that a[] is an array of integers, MaxPQ is implemented using a binary heap, and
N ≥ k ≥ 1.

(a) What does it output?

(b) What is the order of growth of its worst-case running time. Circle the best answer.

k log k k log N N log k N log N N2

Now suppose the marked line was deleted. Repeat the previous two questions.

(c) What does it output?

(d) What is the order of growth of its worst-case running time. Circle the best answer.

k log k k log N N log k N log N N2

COS 226 MIDTERM, SPRING 2008 5

5. Binary heaps. (8 points)

Consider the following binary heap (i.e., the array-representation of a heap-ordered complete
binary tree).

0 1 2 3 4 5 6 7 8 9 10 11 12 13
- Z W Y T G K V R S F A - -

(a) Delete the maximum key. Give the resulting binary heap. Circle those values that
changed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
-

(b) Insert the key X into the original binary heap. Give the resulting binary heap. Circle
those values that changed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
-

6 PRINCETON UNIVERSITY

6. Left-leaning red-black trees. (10 points)

(a) Identify which of the figures below represent legal left-leaning red-black trees?
(As usual red links are drawn with thick lines.)

legal: −−−−−−−−−−−−−−−−

illegal: −−−−−−−−−−−−−−−−

8

Midterm, Spring 08

5

8

1

2 7

6

6

82

4

5

8

6

7

9 93

5

1 4 8

7

1

3

(i)

(iv) (v) (vi)

8

7

1

4

3 2 6

(iii)

5

7

1

3

4 6 9

(ii)

2

4

3

9

1 3

5

4

COS 226 MIDTERM, SPRING 2008 7

(b) Consider the following left-leaning red-black tree.

6

Midterm, Spring 08

QG

K

A

C I P

M

Add the key H, then add the key T. Draw the resulting left-leaning red-black tree.

8 PRINCETON UNIVERSITY

7. Binary search trees. (8 points)

Consider the following binary search tree method.

public Key mystery(Key key) {
Node best = mystery(root, key, null);
if (best == null) return null;
return best.key;

}

private Node mystery(Node x, Key key, Node best) {
if (x == null) return best;
int cmp = key.compareTo(x.key);
if (cmp < 0) return mystery(x.left, key, x);
else if (cmp > 0) return mystery(x.right, key, best);
else return x;

}

(a) What does mystery(key) return. Assume key is a data type value of the specified type
and not null. Circle the best answer.

A. Predecessor: the largest key in the symbol table < the search key?

B. Floor: the smallest key in the symbol table ≤ the search key?

C. Ceiling: the smallest key in the symbol table ≥ the search key?

D. Successor: the smallest key in the symbol table > the search key?

E. Get: the key in the symbol table equal to the search key if it’s there; null otherwise.

F. Bad code: Null pointer exception or infinite loop on some inputs.

(b) What is the worst-case number of compares for mystery()? Assume that the BST is
balanced. Circle the best answer.

1 log N N N2 2N

COS 226 MIDTERM, SPRING 2008 9

8. Randomized queue. (10 points)

For Assignment 2, you implemented a randomized queue that supported enqueue and de-
queue (delete and return random) in amortized constant time (using space proportional to
the number of items on the queue).

Use a balanced binary search tree to implement the two operations in logarithmic time per
operation in the worst-case (using space proportional to the number of items on the queue).

Hint: simulate a dynamically resizable array using st.get(i), st.put(i, item), and st.delete(i).
Use StdRandom.uniform(N) to generate a random integer between 0 and N − 1.

public class RandomizedQueue<Item> {
private RedBlackBST<Integer, Item> st = new RedBlackBST<Integer, Item>();

// add the item to the queue
public void enqueue(Item item) {

int N = st.size();

// YOUR CODE HERE

}

// delete and return a random item from the queue
public Item dequeue() {

int N = st.size();
if (N == 0) throw new RuntimeException("Randomized queue underflow");

// YOUR CODE HERE

}

}

