
COS 226 Algorithms and Data Structures Fall 2009

Midterm

This test has 8 questions worth a total of 60 points. You have 80 minutes. The exam is closed
book, except that you are allowed to use a one page cheatsheet. No calculators or other electronic
devices are permitted. Give your answers and show your work in the space provided. Write out
and sign the Honor Code pledge before turning in the test.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Problem Score Problem Score
0 4
1 5
2 6
3 7

Sub 1 Sub 2

Total

Name:

Login ID:

Precept: P01 12:30 Anuradha
P02 3:30 Berk
P03 2:30 Corey

1



2 PRINCETON UNIVERSITY

0. Miscellaneous. (1 point)

Write your name and Princeton NetID in the space provided on the front of the exam, and
circle your precept number.

1. Analysis of algorithms. (8 points)

(a) Tilde notation is more precise than Big-Oh notation at describing the growth of a func-
tion because:

I. Tilde notation includes the coefficient of the highest order term.

II. Tilde notation provides both an upper bound and a lower bound
on the growth of a function.

III. Big-Oh notation suppresses lower order terms, so it does not necessarily
accurately describe the behavior of a function for small values of N .

Circle the best answer.

(a) I only.

(b) I and II only.

(c) I and III only.

(d) I, II and III.

(e) None.

(b) Consider the following code fragment.

int count = 0;
for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)
for (int k = j+1; k < N; k++)

if (a[i] + a[j] >= a[k]) count++;

Suppose that it takes 1 second to execute this code fragment when N = 1000. Using tilde
notation, formulate a hypothesis for the running time (in seconds) of the code fragment
as a function of N .



COS 226 MIDTERM, FALL 2009 3

2. 8 sorting algorithms. (8 points)

The column on the left is the original input of strings to be sorted; the column on the right
are the string in sorted order; the other columns are the contents at some intermediate step
during one of the 8 sorting algorithms listed below. Match up each algorithm by writing its
number under the corresponding column. Use each number exactly once.

COS ARC ARC ARC COS ART CHM CHE REL ARC
PHY CHE CHE ART COS CEE ART COS PHY ART
ELE COS COS CEE ELE CHM ARC CHM PHY CEE
COS COS COS CHE PHY ARC CEE COS ELE CHE
MAT ECO ECO CHM ARC COS CHE COS PHI CHM
MOL ELE EEB COS LIN CHE COS ART ORF COS
LIN GEO ELE COS MAT EEB COS CEE ORF COS
ARC LIN ELE COS MOL COS COS ARC COS COS
ECO MAE ENG COS CHE COS COS COS ELE COS
CHE MAT GEO COS ECO COS COS COS EEB COS
MAE MOL LIN COS GEO EEB COS MAE MUS COS
GEO PHY MAE ECO MAE COS ORF GEO GEO ECO
ORF ORF MAT ORF EEB COS EEB ORF ORF EEB
EEB EEB MOL EEB ELE ELE ENG EEB MAT EEB
ENG ENG ORF ENG ENG MAE ELE ENG LIN ELE
ELE ELE PHY ELE ORF ELE GEO ELE COS ELE
COS COS ART MOL CEE ECO ELE ECO COS ELE
ELE ELE CEE ELE COS ENG MAE ELE ECO ENG
CEE CEE COS ELE EEB MAT EEB LIN CEE GEO
EEB EEB EEB EEB ELE LIN ECO EEB CHE LIN
ART ART ELE PHY ART ELE MUS MOL ART MAE
MUS MUS MUS MUS MUS MUS PHI MUS MAT MAT
PHI PHI ORF PHI ORF MAT ORF PHI MAE MAT
ORF ORF PHI ORF PHI ORF LIN ORF ELE MOL
COS COS COS GEO COS GEO PHY MAT COS MUS
PHY PHY PHY PHY COS ORF MOL PHY MOL ORF
COS COS COS LIN MAT MOL MAT COS COS ORF
MAT MAT MAT MAT PHY PHY MAT MAT EEB ORF
CHM CHM CHM MAT CHM ORF ORF ELE CHM PHI
ORF ORF ORF ORF COS PHY ELE ORF ENG PHY
COS COS COS MAE ORF PHI REL PHY COS PHY
REL REL REL REL REL REL PHY REL ARC REL
--- --- --- --- --- --- --- --- --- ---
0 1

(0) Original input

(1) Sorted

(2) Selection sort

(3) Insertion sort

(4) Shellsort
(13-4-1 increments)

(5) Mergesort
(top-down)

(6) Mergesort
(bottom-up)

(7) Quicksort
(standard, no shuffle)

(8) Quicksort
(3-way, no shuffle)

(9) Heapsort



4 PRINCETON UNIVERSITY

3. Binary heaps. (8 points)

Consider the following max-heap.

1

2

4 5 6 7

10 118 9

3

E

J

I

R

H

M

K

T

O

S

A

(a) The max-heap above resulted after a sequence of insert and remove-the-maximum op-
erations. Assume that the last operation was an insert. Which key(s) could have been
the one inserted last? Circle all possible keys.

A E H I J K M O R S T

(b) Draw the heap that results after deleting the maximum key from the heap above.



COS 226 MIDTERM, FALL 2009 5

4. Red-black trees. (8 points)

Consider the following left-leaning red-black tree. Add the key Z, then add the key P.

S

R

E

A
C

H
M

red link

(a) Draw the resulting left-leaning red-black tree.

(b) How many left rotations, right rotations, and color flips are performed in total to insert
the two keys?

−−− left rotation(s) −−− right rotation(s) −−− color flip(s)



6 PRINCETON UNIVERSITY

5. Hashing. (6 points)

Suppose that the following keys are inserted in some order into an initially empty linear-
probing hash table of size 7, using the following table of hash values:

key hash
A 3
B 1
C 4
D 1
E 5
F 2
G 5

Which of the following could be the contents of the linear-probing array?

I.
0 1 2 3 4 5 6
G B D F A C E

II.
0 1 2 3 4 5 6
B G D F A C E

III.
0 1 2 3 4 5 6
E G F A B C D

Circle the best answer.

(a) I only.

(b) I and II only.

(c) I and III only.

(d) I, II and III.

(e) None.



COS 226 MIDTERM, FALL 2009 7

6. Data structures. (9 points)

Given an N -by-N grid of sites, you wish to repeated select a site (i, j) at random among all
sites not yet chosen. Consider the following code fragment for accomplishing this task.

ArrayList<Integer> sites = new ArrayList<Integer>();
for (int id = 0; id < N*N; id++) { // for each site,

sites.add(id); // add to end of list
}
while (!sites.isEmpty()) {

int n = sites.size(); // number of elements left in list
int r = StdRandom.uniform(n); // between 0 and n-1
int id = sites.remove(r); // remove and return item at index r
int i = id / N, j = id % N; // site (i, j)
...

}

(a) The java.util.ArrayList data type is implemented using an array (with doubling
and halving). What is the order-of-growth of the worst-case running time of the code
fragment as a function of N? Circle the best answer.

N N log N N2 N2 log N N3 N4 2N

(b) Which data structure that we’ve encountered in this course should you use instead of
java.util.ArrayList? Circle the best answer.

i. union-find

ii. stack / queue

iii. deque

iv. randomized queue

v. binary heap

vi. red-black tree

vii. hash table

(c) For the improved version in (b), what is the order-of-growth of the worst-case running
time as a function of N? Circle the best answer.

N N log N N2 N2 log N N3 N4 2N



8 PRINCETON UNIVERSITY

7. Generalized queue. (12 points)

Design a data structure that supports the following API for a generalized queue.

52

Generalized queue API

        public class GQ<Item item>        public class GQ<Item item>        public class GQ<Item item>

GQ() create an empty generalized queue

Item get(int i) return the ith item from queue

void addFirst(Item item) insert item at the front of the queue

void addLast(Item item) append item to the end of the queue

Item remove(int i) remove the ith  item from the queue

Here is a sample client, showing the contents of the queue after each insertion / deletion.

GQ<String> gq = new GQ<String>();
gq.addFirst("A"); // A
gq.addFirst("B"); // B A
gq.addLast("C"); // B A C
gq.addLast("D"); // B A C D
gq.addFirst("E"); // E B A C D
gq.addFirst("F"); // F E B A C D
gq.addLast("G"); // F E B A C D G

String s1 = gq.get(2); // s1 = "B"
gq.remove(2); // F E A C D G
String s2 = gq.get(2); // s2 = "A"

Your data structure should implement all operations in logarithmic time (or better) as a
function of the size of the queue. You may use any of the data structures we have discussed
in this course in your solution. Your solution will be graded for correctness, efficiency, clarity,
and conciseness.

For half-credit, describe a data structure that implements all operations except remove in
constant amortized time.



COS 226 MIDTERM, FALL 2009 9

(a) Describe the underlying data structure. Draw it after the first 7 insertions for the
example above.

(b) Describe how to implement get().

(c) Describe how to implement addFirst() and addLast().

(d) Describe how to implement remove().


