COS126 Number Systems Activity - Booksite 5.1

Binary and Decimal

1. What is the binary integer 101, represented in decimal? $4+1=5$
2. What is the binary integer 1010 , represented in decimal? $\quad 8+2=10$.
(How is this related to the previous answer?) Twice as much as 101
3. What is the binary integer 10100, represented in decimal? 20.
(What is the pattern?) Again twice as much since all ones became twice as valuable
4. What is the binary integer 101001, represented in decimal? 41. Twice as much plus one.
(Could you write a program to use this approach?) Yes, and it is useful in LFSR!
5. What is the decimal integer 116, represented in binary?

Right to left: see "Converting from decimal to base b" on booksite §5.1. 116 is even, so ends in a 0 , preceded by representation of $116 / 2=58.58$ even so it ends in a 0 , etc. $\Rightarrow \mathbf{1 1 1 0 1 0 0}$ Left to right: biggest power of 2 that fits (≤ 116) is 64 , leaving $116-64=52$. Biggest power of 2 in this remainder is 32 . Keep going with remainders, $116=64+32+16+4=$ binary 1110100 .

Binary and Hex

6. What are the hexadecimal numbers C, D, and E, expressed in binary? These are twelve, thirteen, fourteen, which are 1100, 1101, 1110.
7. Express the hexadecimal number C 0 DE as a sum of 4 terms corresponding to the 4 digits. What is the value of this expression when converted to binary? Note that $16=2^{4}, 16^{3}=2^{12}$ and $\times 2$ shifts us left by one position. C0DE is $12 \times 16^{3}+0 \times 16^{2}+13 \times 16^{1}+14 \times 16^{0}$ $=1100000011011110$ (C0DE)
8. What is the binary number 100100110, represented in hexadecimal? (Avoid using decimal.) Reverse the previous process. 100100110 and converting each 4 bits to a hex digit, 126

Bitwise Operators (In Q9 thru Q13, all numbers are in binary)

9. What is the binary value of 1010 | 110? 1110
10. What is the binary value of 1010 \& 110? 10
11. What is the binary value of $1010 \ll 10$? 101000
12. What is the binary value of $1010 \gg 10$? 10
13. What is the binary value of $1010 \wedge 110$?

1100
14. What is the value, expressed in hexadecimal, of C05126 \wedge CBE245 \wedge C05126? (What is the trick?) Since the order of inputs to xor doesn't matter, this equals CBE245 ^ C05126 ^ C05126. Since anything xor'ed with itself is 0 , this is CBE245 $\wedge 0=\mathbf{C B E} 245$

16-bit Two's-Complement Representations

15. What is the complement of 0101000011001111 ? 1010111100110000
16. Give the 16-bit two's-complement binary representation of the decimal integer 116 (Use question 5) 0000000001110100
17. Give the 16 -bit two's-complement binary representation of the decimal integer -116 First complement the bits of +116 , then add one, giving 1111111110001100
18. What is the 16 -bit two's-complement hexadecimal representation of the decimal integer -116 ? Like Q8 (converting each 4 bits to a hex digit) FF8C
19. What is the decimal representation of the 16 -bit two's-complement hexadecimal number FFFE? Since the first bit is 1 , this number is negative. Call this negative number X. Then the binary representation of the positive number $-X$ is obtained by flipping bits (0000 000000000001) and adding one (0000 000000000010). So $-X$ is 2, i.e. X is $\mathbf{- 2}$.

Challenges (Read Booksite §5.1)

20. What should the binary numbers 0.1 and 0.01 represent? In decimal these are 10^{-1} and 10^{-2}. In binary these are likewise $2^{-1}=1 / 2$ and $2^{-2}=1 / 4$
21. Booksite exercises 5.1.18, 5.1.23, 5.1.25, Booksite creative exercises 5.1.6, 5.1.29
