
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #24
Scribe: Jordan Ash May 1, 2014

1 Review of Game Theory:

Let M be a matrix with all elements in [0, 1]. Mindy (called the row player) chooses row i
while Max (called the column player) chooses column j. In this case, from Mindy’s expected
loss is:

Loss = M(i, j)

Alternatively, Mindy could select a move randomly from a distribution P over the rows
and Max could select a move randomly from a distribution Q over the columns. Here, the
expected loss for Mindy is:

Loss =
X

i,j

P (i)M(i, j)Q(j) = P TMQ = M(P,Q)

P and Q are called “mixed strategies,” while i and j are called “pure strategies.”

2 Minimax Theorem:

In some games, such as Rock, Paper, Scissors, players move at exactly the same time. In
this way, both players have the same information available to them at the time of moving.
Now we suppose that Mindy plays first, followed by Max. Max knows the P that Mindy
chose, and further knows M(P,Q) for any Q he chooses. Consequently, he chooses a Q that
maximizes M(P,Q). Because Mindy knows that Max will choose Q = argmax

Q

M(P,Q)
for any P she chooses, she selects a P that minimizes max

Q

M(P,Q). Thus, if Mindy goes
first, she could expect to su↵er a loss of min

P

max
Q

M(P,Q). Overall, it may initially seem
like the player to go second has an advantage because she has more information available
to her. From Mindy’s perspective again, this leads to:

max
Q

min
P

M(P,Q) min
P

max
Q

M(P,Q)

So Mindy playing after Max seems to be better than if the two play in reverse order.
However, John von Neumann showed that the expected outcome of a game is always the
same, regardless of the order in which players move.

v = max
Q

min
P

M(P,Q) = min
P

max
Q

M(P,Q)

Here, v denotes the value of the game. This may seem counterintuitive, because the
player that goes second has more information available to her at the time of choosing a
move. We will prove the above statement using an online learning algorithm. Let:

P ⇤ = argmin
P

max
Q

M(P,Q)

Q⇤ = argmax
Q

min
P

M(P,Q)

Then,

8Q : M(P ⇤, Q) v (1)

8P : M(P,Q⇤) � v (2)

In other words, for some optimal P ⇤, the maximum loss that Max could cause is bounded
by v and Mindy’s loss is at least v, regardless of the particular strategies they choose.

If we had knowledge of M , we might be able to find P ⇤ by employing techniques from
linear programming. However, we don’t necessarily have this knowledge, and even if we did,
M could be massively large. Further, P ⇤ applies here only for opponents that are perfectly
adversarial, so it doesn’t account for an opponent that might make mistakes. Thus, it makes
sense to try to learn M and Q iteratively.

We do this with the following formulation:

for t = 1, . . . , T
Mindy chooses P

t

Max chooses Q
t

(with knowledge of P
t

)
Mindy observes M(i, Q

t

)8i
Loss = M(P

t

, Q
t

)
end

Clearly, the total loss of this algorithm is simply
P

T

t=1M(P
t

, Q
t

). We want to be able
to compare this loss to the best possible loss that could have been achieved by fixing any
single strategy for all T iterations. In other words, we want to show:

P
T

t=1M(P
t

, Q
t

) min
P

P
T

t=1M(P,Q
t

) + [Small Regret Term]

2.1 Multiplicative Updates

Suppose we use a multiplicative weight algorithm that updates weights in the following way,
where n is the number of rows in matrix M :

2

� 2 [0, 1) (3)

P1(i) =
1

n
8i (4)

P
t+1(i) =

P
t

(i)�M(i,Qt)

Normalizing Constant
(5)

Our algorithm is similar to the weighted majority algorithm. The idea is decrease the
probability of choosing a particular row proportionally to the loss su↵ered by selecting that
row. After making an argument using potentials, we could use this algorithm to obtain the
following bound:

TX

t=1

M(P
t

, Q
t

) ↵
�

min
P

TX

t=1

M(P,Q
t

) + c
�

ln(n) (6)

where ↵
�

=
ln(1

�)

1��

and c
�

= 1
1��

.

2.2 Corollary

We can choose � such that:

1

T

TX

t=1

M(P
T

, Q
T

) min
P

1

T

TX

t=1

M(P,Q
t

) +�
T

(7)

where �
T

= O(
q

ln(n)
T

), which goes to zero for large T . In other words, the loss su↵ered
by Mindy per round approaches the optimal average loss per round. We’ll use this result
to prove the Minimax theorem.

2.3 Proof

Suppose that Mindy uses the above algorithm to choose P
t

, and that Max chooses Q
t

such
that Q

t

= argmax
Q

M(P
T

, Q), maximizing Mindy’s loss. Also, let:

P̄ =
1

T

TX

t=1

P
t

(8)

Q̄ =
1

T

TX

t=1

Q
t

(9)

We also know intuitively, as mentioned before, that max
Q

min
P

M(P,Q) min
P

max
Q

M(P,Q),
because as stated earlier, the player that goes second has more information available to her.

3

To show equality, which would prove the Minimax theorem stated earlier, it’s enough to
show that max

Q

min
P

M(P,Q) � min
P

max
Q

M(P,Q) also.

min
P

max
Q

P TMQ max
Q

P̄ TMQ

By definition of P̄ :

= max
Q

1

T

TX

t=1

P T

t

MQ

By convexity:

 1

T
max
Q

TX

t=1

P T

t

MQ

By definition of Q
t

:

=
1

T

TX

t=1

P T

t

MQ
t

By corollary 2.2:

 min
P

1

T

TX

t=1

P TMQ
t

+�
T

By definition of Q̄:

= min
P

P TMQ̄+�
T

 max
Q

min
P

P TMQ+�
T

The proof is finished because �
T

goes to zero as T gets large. This proof also shows
that:

max
Q

P̄ TMQ v +�
T

where v = max
Q

min
P

P TMQ. If we take the average of the P
t

terms computed at each
round of the algorithm, we get something within �

T

of the optimal value. Because �
T

goes
to zero for large values of T , we can get closer to the optimal strategy by simply increasing
T . In other words, this strategy becomes more and more optimal as the number of rounds
T increases. For this reason, P̄ is called an approximate min max strategy. A similar
argument could be made to show that Q̄ is an approximate max min strategy.

3 Relation to Online Learning

In order to project our analysis into an online learning framework, consider the following
problem setting:

4

for t = 1, . . . , T
Observe x

t

from X
Predict ŷ

t

2 {0, 1}
Observe true label c(x

t

)
end

Here we consider each hypothesis h as being an expert from the set of all hypotheses
H. We want to show that:

number of mistakes number of mistakes of best h + [Small Regret Term]

We set up a game matrix M where M(i, j) = M(h, x) = 1 if h(x) 6= c(x) and 0 other-
wise. Thus, the size of this matrix is |H| · |X|. Given an x

t

, the algorithm must choose
some P

t

, a distribution used to predict x
t

’s label. h is chosen according to the distribution
P
t

, and then ŷ
t

is chosen as h(x
t

). Q
t

in this context is the distribution concentrated on x
t

(is 1 at x
t

and 0 at all other x 2 X). Consequently:

TX

t=1

M(P
t

, x
t

)

= E[number of mistakes]

 min
h

TX

t=1

M(h, x
t

) + [Small Regret Term]

Notice that min
h

P
T

t=1M(h, x
t

) is equal to the number of mistakes made by the best
hypothesis h. If we substitute M(P

t

, x
t

) with
P

h

P
t

(h) ·1{h(x
t

) 6= c(x
t

)} = Pr[h(x) 6= c(x)]
above, we obtain the same bound as was found in the previous section.

4 Relation to Boosting

We could think of boosting as a game between the boosting algorithm and the weak learner
it calls. Consider the following problem:

for t = 1, . . . , T
The boosting algorithm selects a distribution D

t

over the training set samples X
The weak learner chooses a hypothesis h

t

end
Here we assume that all weak learners h

t

obey the weak learning assumption, i.e. that
Pr(x,y)⇠Dt

[h
t

(x) 6= y)] 1
2 � � and � > 0. We could define the game matrix M 0 in terms

of the matrix M used in the last section. However, here we want a distribution over the X
samples rather than over the hypotheses, so we need to transpose and normalize M .

M 0 = 1�MT

5

In other words, M 0(i, j) = M 0(x, h) = 1 if h(x) = c(x) and 0 otherwise. Here, P
t

= D
t

, and
Q

t

is a distribution fully concentrated on the particular h
t

chosen by the weak learner. We
could apply our same analysis from the multiplicative weights algorithm:

1
T

P
T

t=1M
0(P

t

, h
t

) min
x

1
T

P
T

t=1M
0(x, h

t

) +�
T

Also,

M 0(P
t

, h
t

) =
P

x

P
T

(x) · 1{h(x) = c(x)} = Pr[h
t

(x) = c(x)] � 1
2 + �

Combining these facts:

1

2
+ � 1

T

TX

t=1

M 0(x, h
t

)

 min
x

1

T

TX

t=1

M 0(x, h
t

) +�
T

Rearranging,

8x :
1

T

X

t=1

TM 0(x, h
t

) � 1

2
+ � ��

T

>
1

2

which is again true because �
T

approaches 0 as T gets large. In other words, we have found
that over 1

2 of the weak hypotheses correctly classify any x when T gets su�ciently large.
Because the final hypothesis is just a majority vote of these weak learners, we have proven
that the boosting algorithm drives training error to zero when enough weak learners are
employed.

6

