
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #23
Scribe: Kevin Lee April 29, 2014

1 Recap

Last lecture, we briefly introduced the setup for portfolio selection. We assume that every
time period, there are N stocks available to us, and we want to figure out how to best
allocate our money among the stocks at the beginning of every investment period. We
define:

pt(i) =
price of stock i at end of day t
price of stock i at start of day t

as the price relative which is how much a stock goes up or down in a single day.
St denotes the amount of wealth we have at the start of day t and we assume S1 = 1. We

denote wt(i) to be the fraction of our wealth that we have in stock i at the beginning of day
t which can be viewed as a probability distribution as ∀i, wt(i) ≥ 0 and

∑
iwt(i) = 1. We

can then derive the total wealth in stock i at the start of day t to be Stwt(i) and the total
wealth in stock i at the end of day t to be Stwt(i)pt(i). We can use a simple summation
over the i stocks to find our total wealth at the end of day t as:

St+1 =
N∑

i=1

Stwt(i)pt(i) = St(wt · pt)

The total wealth after T time periods is then:

ST+1 =
T∏

t=1

(wt · pt)

2 Portfolio Selection

Our goal is to make as much money as possible. This is done by maximizing
∏T

t=1(wt ·pt).
This is the same as maximizing the log of the expression, which is

∑T
t=1 ln(wt · pt). This

is also the same as minimizing the negative of the log of the expression,
∑T

t=1− ln(wt ·pt).
We thus notice that maximizing wealth is equivalent to minimizing an expression that looks
like log loss, so we can view investing as an online learning problem:

for t = 1, ..., T :
learner/investor chooses wt

stock market/nature chooses pt

loss = − ln(wt · pt)

In each round, the learner chooses wt which is how he invests money, and the stock market
responds with each stock going up or down that day as represented by pt. Our goal is then
to minimize the cumulative loss.

A natural starting point is to aim to do almost as well as the best individual stock.
We can do this by massaging our problem so that we can apply Bayes algorithm which is
designed around log loss. We define the Bayes algorithm outcome space to be X = {0, 1}
and choose C ≥ pt(i) ∀t, i. For each timestep t of the algorithm, each expert i needs to
come up with a probability distribution over the outcome space X by coming up with
a probability for outcome 1, pt,i(1), and trivially pt,i(0) = 1 − pt,i(1). Let the outcomes
xt = 1 ∀t. We can then let pt,i(1) = pt(i)

C . Applying Bayes algorithm will give us back
a weight vector wt,i, and we use these weights for investing by setting wt(i) = wt,i. Now
observe that:

qt(xt) = qt(1) =
∑

i

wt,ipt,i(1) =
∑

i

wt,ipt(i)
C

=
wt · pt

C

The bound on log loss guaranteed by Bayes algorithm says:

−
∑

t

ln qt(xt) ≤ min
i
−

∑
t

ln pt,i(xt) + lnN

−
∑

t

ln(
wt · pt

C
) ≤ min

i
−

∑
t

ln
pt(i)
C

+ lnN

−
∑

t

ln(wt · pt) ≤ min
i
−

∑
t

ln pt(i) + lnN

This essentially says:

− ln(wealth of the algorithm) ≤ − ln(wealth of best stock) + lnN

We then remove the logs to find:

wealth of the algorithm ≥ 1
N

(wealth of best stock)

The algorithm is actually equivalent to the “buy and hold” strategy where on day 1 we
invest 1

N of our wealth into each stock and then just leave it there. Since this means we
will invest 1

N of our wealth into the best stock, the bound on the wealth of the algorithm
naturally says that we will make at least 1

N of the wealth of the best stock, even in the
case that we lose all our money in the other stocks. When we invest our money, ideally
we want the money to grow exponentially at the rate ct where c is a constant that is to be
maximized. The bound on the wealth of the algorithm implies that the constant c that we
get from the algorithm will be asymptotically at least as good as that of the best underlying
stock.

3 Constant Rebalanced Portfolio

Instead of comparing with the best individual stock, we now look towards comparing with
constant rebalanced portfolios (CRP). In a CRP, we decide ahead of time on fixed allocations
among the different stocks and, everyday, rebalance the different portfolios so that they
always have those fixed allocations. The simplest kind of CRP is a uniform CRP (UCRP)
where everyday we rebalance equally among the N stocks. CRP is a very common strategy,
as it is natural to constantly rebalance your portfolio so that you have, for example, 60% in

2

day stock 1 price stock 2 price stock 1 price relative stock 2 price relative
1 1 1 1 0.5
2 1 0.5 1 2
3 1 1 1 0.5
4 1 0.5 1 2
5 1 1 1 0.5

Figure 1: Stock 1 and 2 behavior

stock, 30% in bonds, and 10% in cash. If stocks go up and bonds go down, then CRP will
have you sell stock to buy more bonds. This thus encourages buying low and selling high.

We present a concrete example where CRP is a good idea. Imagine there is stock 1 and
stock 2 that both start at $1. The price of stock 1 never changes, and the price of stock 2
is $1 on odd days and $0.50 on even days. The behavior of these two stocks is depicted for
5 days in Figure 1.

The buy and hold strategy will never earn money when applied to these two stocks. We
then look at how UCRP performs:

S1 = 1

S2 = S1(
1
2
· 1 +

1
2
· 1

2
) = S1 ·

3
4

S3 = S2(
1
2
· 1 +

1
2
· 2) = S2 ·

3
2

= S1 ·
3
4
· 3

2

More generally, if we have St on day t then St+2 = St · 3
4 ·

3
2 = St · 9

8 . Thus every two days
our wealth grows by 12.5%, so it grows exponentially.

4 Universal Portfolio Algorithm

We now return to making an algorithm to try to do almost as well as the best CRP instead
of the best individual stock. Let us say that each CRP is a vector b = 〈b1, ..., bN 〉 which
forms a valid distribution over the N stocks, and using the CRP means using wt(i) = bi. We
then would want to reapply Bayes algorithm as we previously did, but instead of splitting
wealth amongst stocks, we split it amongst all possible CRP’s. There are uncountably
infinite possible CRPs, so for each CRP, b, we give it an infinitesimally small piece of our
wealth, dµ(b). At the start of day t:

wealth in CRP b =
t−1∏
s=1

(b · ps)dµ(b)

∏t−1
s=1(b · ps) is how much wealth we would have at the start of day t if we had started

with $1 invested in the CRP, and dµ(b) scales this wealth down as we only in fact invested
an infinitesimally small amount into the CRP. We can simply integrate over the set of all
possible CRP’s b to find the total wealth at the start of day t:

total wealth = St =
∫ t−1∏

s=1

(b · ps)dµ(b)

3

Figure 2: Simplex

We can use another integral over the set of all possible CRP’s b to find the total wealth
invested in stock i at the start of day t, where bi is the fraction of our wealth in i, as:

total wealth in stock i =
∫
bi

t−1∏
s=1

(b · ps)dµ(b)

We can then calculate the fraction of our wealth we need to invest in stock i, wt(i) as:

wt(i) =
∫
bi

∏t−1
s=1(b · ps)dµ(b)∫ ∏t−1

s=1(b · ps)dµ(b)

Using this wt(i) to rebalance our portfolio at each time step is known as the Universal
Portfolio (UP) Algorithm or Cover’s algorithm.

5 Bounds on UP Algorithm

Theorem 1. Wealth of UP algorithm ≥ (1
(T+1)N−1)(Wealth of best CRP)

While (1
(T+1)N−1) may appear to be a small fraction, it holds for any stock market and

still says the rate of exponential growth of this algorithm will eventually match the rate of
exponential growth of the best CRP.

We will proceed to prove a slightly weaker version of this theorem in two steps. Let
the best CRP be b∗. Fortunately in our algorithm, we put part of our money into b∗, but
unfortunately we only put in an infinitesimally small amount. We note that the CRP’s are
essentially just probability vectors and so they live in the space of all probability vectors
which is known as the simplex. We illustrate this simplex in the case that we have 3 stocks
in Figure 2. b∗ is just a point in the simplex and we consider the neighborhood around b∗,
which consists of CRPs that are close to b∗, as illustrated by the inner shaded triangle in
Figure 2. We then want to argue two points. In step 1, we want to argue that all of the
CRPs in the neighborhood of b∗ attain wealth close to b∗. Then in step 2, we want to show
that the overall size of the neighborhood is large. Let us define

∆ = {all CRPs} = {b : bi ≥ 0,
∑

i

bi = 1}

4

and we define the neighborhood of b∗ as:

N(b∗) = {(1− α)b∗ + αz : z ∈ ∆}

where α is a small positive number and we are essentially mixing b∗ with some other
distribution z.

Proof. Step 1:
Let us say that b is one of the points in the neighborhood of b∗ and so
b = (1− α)b∗ + αz. We can derive the amount of wealth that b gains at time t to be:

b · pt = (1− α)b∗ · pt + αz · pt

z · pt ≥ 0 as price relatives are never negative. Thus, after T timesteps:

wealth of b ≥ (1− α)T (wealth of b∗)

Proof. Step 2:

Vol(N(b∗)) = Vol({(1− α)b∗ + αz : z ∈ ∆})

where Vol() denotes volume. We now note that (1 − α)b∗ is a fixed quantity, so the total
volume will be the same if we shift the simplex and remove this quantity:

Vol(N(b∗)) = Vol({αz : z ∈ ∆})
= Vol(∆) · αN−1

The last equality holds as the simplex is an N − 1 dimensional object and each dimension
is being scaled by α.

We can now combine the results of the two steps to show:

wealth of UP algorithm ≥ (fraction of CRPs in N(b∗))(minimum wealth of any CRP in N(b∗))

≥ αN−1(1− α)T (wealth of b∗)

≥ 1
e(T + 1)N−1

(wealth of b∗)

where the last inequality holds if we choose α = 1
T+1 . Thus, we have proved a slightly

weaker version of the theorem.

6 Game Theory

Game Theory is a field that studies games and is really about interactions between players
of all kinds. There is a natural connection to learning, as in learning there is often an
interaction between a teacher and a student or between a learner and nature. For our
purposes, a game is defined by a matrix. The game matrix for rock, paper, scissors is
shown in Figure 3. The rows of the matrix are actions that the row player Mindy can take,
and the columns are actions that the column player Max can take. Mindy chooses one of
the rows, and Max chooses one of the columns. The entry that is defined by these choices

5

R P S
R 0.5 1 0
P 0 0.5 1
S 1 0 0.5

Figure 3: Rock, Paper, Scissors Game Matrix

in the matrix is the loss suffered by Mindy. Max tries to maximize this loss while Mindy
tries to minimize it. In general we will always have a game matrix M . To play, Mindy
chooses row i, and Max chooses column j. Individual rows i and columns j are called pure
strategies. The corresponding entry in the matrix M(i, j) is the loss suffered by Mindy. In
principle, any two-person zero-sum game can be put into this form.

6

