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1 Online Learning with Log-Loss

1.1 Problem

Recall the online learning problem from last time:

i ∈ N experts
for t = 1, . . . , T do

each expert i chooses distribution pt,i over X
master combines into distribution qt over X

observe xt ∈ X
end for

At the end of this learning procedure, we want the following bound on the log-loss of
the master:

−
T∑
t=1

ln qt(xt) ≤ min
i

(
−

T∑
t=1

ln pt,i(xt)

)
+ ε (1)

where ε is small, and the minimization term is interpreted as the cumulative loss of the best
expert, in hindsight.

1.2 Universal Compression

Before we develop an algorithm that allows us to arrive at the desired bound in Equation
1, we take an aside to motivate online learning with log-loss.

Here is a problem from coding theory: Suppose we have a sender, Alice, and a receiver,
Bob. Suppose Alice wants to send a message to Bob, and suppose the message is comprised
of letters from alphabet X and p(x) is the probability of choosing x ∈ X. Then for messages
of length 1 letter, the optimal way of coding the message is − lg p(x) bits.

But the more interesting problem is extending this encoding to messages of arbitrary
length, x1, x2, . . .. We could just assume that the xt are independently drawn from the same

distribution p, in which case the optimal encoding simply has length
∑
t

− lg p(xt).

However, independence is a poor assumption. In English, for example, knowing that
the message so far is “I am goi”, basically tells us that the next letter is going to be n.
However, using the typical distribution of letters over the English alphabet, the strawman
approach would guess that e has the highest likelihood of being the next letter.

From this example, we learn that ideally, we want pt to be the probability of the next
letter, xt, given the context ≡ 〈x1, . . . , xt−1〉. Denote this context as xt−1

1 . If we have such

pt, then the length of the optimal encoding will be
∑
t

− lg pt(xt) bits.

However, it is nearly impossible to learn pt, because of the nearly limitless number of
contexts. Instead, we consider a learning algorithm that takes a bunch of candidate methods



for encoding the messages, and combine them into a master method. For example, a sample
candidate method would only look 1 letter back, and have contexts of length 1 letter.

Formally, suppose the ith method does the following: Given xt−1
1 , encodes xt using

− lg pt,i(xt) bits, where pt,i is method i’s estimated distribution of xt, given xt−1
1 .

Then we combine these into the master method, which encodes xt with − lg qt(xt) bits.

Then the master uses a total of

T∑
t=1

− lg qt(xt) bits to encode the entire message. We want:

T∑
t=1

− lg qt(xt) ≤ min
i

T∑
t=1

− lg pt,i(xt) + ε

Namely, we want the total number of bits used by the master to be at most the number of
bits used by the best method, plus some small ε. This is exactly what the online learning
model that we presented in Section 1.1 does.

2 Bayes Algorithm

Now we go back to describing an algorithm for arriving at Equation 1. To derive such an
algorithm, we pretend that the data is random. However, we will see in the next section
that the proof of the algorithm’s bounds holds for any arbitrary data sequence and does not
depend on the randomness assumption. Then suppose x1, . . . , xT is random and generated
as follows:

• Expert i∗ chosen at random (assume uniformly across all experts). So Pr[i∗ = i] = 1
N

• Generate xt according to distribution pt,i∗ . Then Pr[xt|xt−1
1 , i∗ = i] = pi(xt|xt−1

1 )

We also denote pt,i(xt) = pi(xt|xt−1
1 ) and qt(xt) = q(xt|xt−1

1 ). Furthermore, by defini-
tion, q(xt|xt−1

1 ) = Pr[xt|xt−1
1 ]. Then we have:

q(xt|xt−1
1 ) = Pr[xt|xt−1

1 ] By definition

=
∑
i

Pr[xt, i
∗ = i|xt−1

1 ] Marginalizing over all experts

=
∑
i

Pr[i∗ = i|xt−1
1 ] · Pr[xt|i∗ = i, xt−1

1 ] Product rule

=
∑
i

wt,i · pi(xt|xt−1
1 )

where we denote wt,i = Pr[i∗ = i|xt−1
1 ]. Then we seek to specify how wt,i is updated from

round to round. First, we observe that w1,i = Pr[i∗ = i|∅] = Pr[i∗ = i] = 1
N .

Now suppose that we have wt,i and want wt+1,i. Then:

wt+1,i = Pr[i∗ = i|xt1]
= Pr[i∗ = i|xt, xt−1

1 ]

=
Pr[i∗ = i|xt−1

1 ] · Pr[xt|i∗ = i, xt−1
1 ]

Pr[xt|xt−1
1 ]

Bayes’ Rule

=
wt,i · pi(xt|xt−1

1 )

norm
Consider Pr[xt|xt−1

1 ] as a normalization
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Because Pr[xt|xt−1
1 ] is independent of i, we can consider it as a normalization factor.

Then we observe that we have a simple update algorithm for wt,i. We then modify and fill
in the learning problem from Section 1.1 with the following algorithm:

Bayes’ Algorithm

i ∈ N experts
Initialize w1,i = 1

N
for t = 1, . . . , T do

each expert i chooses distribution pt,i over X

qt(x) =
∑
i

wt,ipt,i(x)

Update wt+1,i =
wt,i·pt,i(xt)

norm
observe xt ∈ X

end for

We also observe that this algorithm is very similar to the weight-update online learning

algorithms that we saw earlier, in which wt+1,i =
wt,i·βloss

Zt
. In this case, loss is the log-loss,

or − ln pt,i(xt). If we let β = e−1, then βlog-loss is precisely the update factor in Bayes’
algorithm.

Now we prove that this algorithm works on any given data x1, . . . , xT , and achieves the
log-loss bound presented in Equation 1.

3 Bounding Results of Bayes’ Algorithm

First, we extend the definition of q so it is defined for entire sequences x1, . . . , xT .
Define:

q(xT1 ) = q(x1) · q(x2|x1) · q(x3|x2, x1) . . .

=
∏
t

q(xt|xt−1
1 )

=
∏
t

Pr[xt|xt−1
1 ]

Similarly, define:

pi(x
T
1 ) =

∏
t

pi(xt|xt−1
1 )

=
∏
t

Pr[xT1 |i∗ = i]

Then:

−
∑
t

ln qt(xt) = −
∑
t

ln q(xt|xt−1
1 )

= − ln
∏
t

q(xt|xt−1
1 )

= − ln q(xT1 )
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Similarly, −
∑
t

ln pt,i(xt) = − ln pi(x
T
1 ). Then:

q(xT1 ) = Pr[xT1 ] =
∑
i

Pr[i∗ = i] · Pr[xT1 |x∗ = i]

=
1

N

∑
i

pi(x
T
1 )

⇒ Log-loss of q = − ln q(xT1 ) = − ln(
1

N

∑
i

pi(x
T
1 ))

≤ − ln
1

N
pi(x

T
1 )

∑
i

pi(x
T
1 ) ≥ pi(xT1 )

Because this last inequality is true for all i, it must be true that the Log-loss of q

≤ min
i

(− ln pi(x
T
1 )) + lnN = min

i
(−
∑
t

ln pt,i(xt)) + lnN , which is exactly as we desired in

Equation 1.
We note here that Alice could have used an offline algorithm to determine the best

encoding of a message. Namely, Alice runs all i methods on her message, determines the

encoded message with optimal length, which would be min
i

(−
∑
t

lg pt,i(xt)) bits, and sends

this across to Bob, along with a specification of the method she used for the encoding. The
encoding of the message takes lgN bits, if there are N methods. Hence, using an offline
method, Alice achieves the same bounds on the length of her optimal message. However,
using the online method, Alice can encode the message as it comes in a stream, and does
not have to store as much data for her calculations.

We also note that we could have used a different prior probability other than the uniform
distribution. We could use Pr[i∗ = i] = πi, instead of 1

N . Then the only modification we
need to make to the original Bayes’ algorithm is the initialization of the weights, which we
change to w1,i = πi. Then the bound becomes

−
T∑
t=1

ln qt(xt) ≤ min
i

(
−

T∑
t=1

ln pt,i(xt)− lnπi

)

4 An Example

Suppose X = {0, 1}. Expert p predicts 0 with probability 1 − p and 1 with probability p.
We have an expert for all p ∈ [0, 1], hence we have infinite experts.

Hence wt,p = 1
norm

t−1∏
t=1

{
p if xt = 1

1− p otherwise
. Suppose there are h 1’s so far. Then wt,p =

ph(1−p)t−1−h

norm .

Then qt =
∑
p

wt,p ·p =

∫ 1

0
wt,p ·pdp =

h+ 1

(t− 1) + 2
. This is known as Laplace smoothing.

But in this case, N = ∞, so the lnN from Bayes’ algorithm is not helpful. In a later
lecture, we will get general bounds that can be applied to this particular case.
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5 Switching Experts

Next time, we will cover a new learning model. Hitherto, we have assumed that there is
one single, best expert. But this is not always a reasonable assumption. Instead, this new
model assumes that the best expert switches based on data that the model sees, and this
may change as time goes on. For example in the following diagram, the best expert changes
during each epoch:

We will also assume that the number of switches is bounded.

5


