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1 Introduction to Probability Density Estimation

1.1 Summary

In this lecture we consider the framework of Probability Density Estimation. In our
previous approaches to learning (Classification, Regression) we are given m labeled points
{(x1, y1), (x2, y2), . . . , (xm, ym)} according to a random distribution P, and, disregarding
this distribution, we want to predict with minimal error the label of a new point x. Such
approaches belong to the class of Discriminative Approaches. The name comes from the
fact that, from a probabilistic perspective, we attempt to find the conditional distribution
Pr(y|x) which helps us discriminate between different label values. An alternative is pro-
vided by Generative Approaches which constitutes the focus of our current discussion.

1.2 Intuition

In the generative approach setting, when presented with m labeled training samples (x1, y1),
(x2, y2), . . ., (xm, ym), we assume the data points x are generated from an unknown distri-
bution P . We aim to model this distribution using the conditional density estimation of
the quantity Pr(x|y). To illustrate this, consider a dataset where the training samples give
information about the distribution of height in a population. The training samples take
the form (height, gender) where the labels y represent the gender. Given the height of a
person we might want to guess the person’s gender. Previously, we might have modeled this
problem using a discriminative approach by looking for a threshold or for a separating hy-
perplane that would give us a decision rule according to which the height of interest belongs
to a man or to a woman. In the new set-up, we are interested in estimating the distribution
of heights separately for women and men such that we can calculate how likely it is for a
new sample to have been generated from either of these distributions. In general, for the
rest of this lecture we assume there is a probability distribution over the values x (in the
example above, we assume there is a distribution of heights for women that is different from
the height distribution of men), and our goal is to model this distribution for the purpose
of learning and inference.

2 Maximum Likelihood

To formalize the above learning setting, consider we are given m samples x1, x2, . . . , xm
drawn from a probability distribution P over a finite domain X (generalizable to the con-
tinuous setting, the assumption over the domain is merely for making calculations easy).
The goal is to estimate P by finding a model that while not too complex, is able to fit the
data. To this end, let Q be a family of possibly infinitely many density functions q. It is
among these functions that we will search for the best model to explain our data.



Definition. Let x1, x2, ...xm be m points sampled iid. from a distribution P and let
q ∈ Q be a density function. The likelihood of x1, x2, . . . , xm under q is the quantity:

m∏
i=1

q(xi) (1)

Notice that this quantity is exactly the probability of generating the m independent
samples given that the underlying model is given by the probability density q.

Example (Coin Toss) Consider flipping a coin with probability q of landing heads.
Consider random variables x which take the value 1 if the coin lands heads, and 0 otherwise.
Then given m coin flips, let the sequence x1, x2, . . . , xm record the sequence of tosses and
notice that the number of heads is nothing else but h =

∑m
i=1 xi. With this notation the

likelihood of the data under q is equal to qh(1− q)m−h.

Naturally, we are interested in the probability function q that performs closest to the
real probability distribution P and which makes the likelihood quantity more likely. As we
want to maximize the probability that the sequence x1, x2, . . . , xm is generated from q we
notice that:

max
q∈Q

∏
i

q(xi) = max log
∏
i

q(xi) = max
∑
i

log(q(xi)) = min
1

m

∑
i

[− log q(xi)] (2)

where − log q(x) is the log loss of q on x and where 1
m

∑
i[− log q(xi)] is the empirical risk,

or the average log loss. We use this empirical risk as a proxy for the real expectation. The
true value of the loss or true risk is given by the quantity Ex∼P [− log q(x)] which can be
iteratively written as:

Ex∼P [− log q(x)]

= −
∑
x∈X
P(x) log q(x)

= −
∑
x∈X
P(x) log q(x) +

∑
x∈X
P(x) logP(x)−

∑
x∈X
P(x) logP(x)

= −
∑
x∈X
P(x) log

P(x)

q(x)
−
∑
x∈X
P(x) logP(x)

= RE(P||q) +H(P)

where RE denotes the relative entropy and H is the Shannon entropy.
Equation (3) justifies the intuition that minimizing (2) would give us the probability density
function closest to the true distribution, where the chosen metric is relative entropy. Going
back to the coin toss example, estimating the bias of the coin from the sequence of tosses
is simply finding the term that maximizes the log likelihood, namely q = h

m .
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3 Maximum Entropy Formulation

Consider now the related problem of modeling the distribution of interest given multiple
constraints, or features of the data. As before, we are given the samples x1, x2, . . . , xm
generated from some unknown distribution P over a finite set X of cardinality N , with
N � m. In addition, for each such x we are given a set of n functions f1, f2, . . . , fn where
fj : X → R. We call these functions features and we think of them as constraints over the
distribution P. The goal is the same as before: estimating P subject to the constraints
induced by the features.

A natural way to approach the problem is to use the additional information encoded into
the feature. To this end, notice that we can approximate the expectations EP [fj ] over the
true distribution for features fj using the empirical average taken over the given samples:

EP [fj ] ≈ Ê[fj ] =
1

m

m∑
j=1

fj(xi) (3)

The problem can be recast as the problem of finding q such that for all i from 1 to
n, Eq[fj ] = Ê[fj ]. As there could be many probability density functions satisfying this
constraint, we will pick the one that minimizes RE(q||U) where U is the uniform distribution
over X :

q = argminqRE(q||U) =
∑
x∈X

q(x) ln
q(x)

1/N

= lnN +
∑
x∈X

q(x) ln(q(x))

= lnN −H(q) (4)

With these in mind let P be the set of probability densities constrained by their features:

P = {q | Eq[fj ] = Ê[fj ], ∀j}. (5)

(6)

The probability of interest is therefore the solution to the following formulation, called
maximum entropy :

maximize H(q)

subject to q ∈ P (7)

Notice however that we can also think about the problem using the maximum likelihood
framework developed in the previous section. To solve this in practice we need to make
the search tractable by restricting the set of density functions Q over which we maximize
(or minimize if we talk about the log loss). One solution to this is to consider the set of
probability distributions q:

q(x) ∝ exp
( n∑
j=1

λjfj(x)
)

(8)
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where λj ∈ R. This family of distribution functions is an example of what is often referred to
as an exponential family. For this particular family we will use the name Gibbs distribution.
The maximum likelihood problem becomes:

maximize

m∑
i=1

log q(xi)

subject to q ∈ Q̄ (9)

where Q̄ is the closure of Q.

The following theorem brings together the two approaches stating that they are, in fact,
equivalent.
Theorem 1. Duality between Maximum Entropy and Maximum Likelihood.
Let q∗ be a probability distribution. Then, the following identities are equivalent:
1. q∗ = arg maxq∈PH(q),
2. q∗ = arg maxq∈Q̄

∑
i log q(xi),

3. q∗ ∈ P ∩ Q̄
Furthermore, any of these properties uniquely determine q∗

Without proving this result, let us consider the Lagrangian form of the likelihood func-
tion, obtaining the following identity in which q(x) for x ∈ X are primal variables and λj
and γ are dual variables or Lagrange multipliers:

L =
∑
x∈X

q(x) log q(x) +
n∑
j=1

λj
(
Ê[fj ]−

∑
x∈X

q(x)fj(x)
)

+ γ
(∑
x∈X

q(x)− 1
)
. (10)

(11)

Setting ∂L
∂q(x) to zero, that is

0 = 1 + log q(x) +
∑
j

λjfj(x) + γ, (12)

we obtain a closed form expression for q(x) that resembles the form of the optimal solution
given by the Gibbs distribution, namely:

q(x) =
exp
(∑n

j=1 λjfj(x)
)

eγ+1
. (13)

By letting Z = eγ+1 and plugging it back into L, we notice that the expression simplifies to
be the log likelihood of q:
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L =
∑
x∈X

q(x)
( n∑
j=1

λjfj(x)− logZ
)
−

n∑
j=1

λj
∑
x∈X

q(x)fj(x) +
n∑
j=1

λjÊ[fj ]

= − logZ +
1

m

n∑
j=1

λj

m∑
i=1

fj(xi)

=
1

m

m∑
i=1

( n∑
j=1

λjfj(xi)− logZ
)

=
1

m

m∑
i=1

log q(xi)

which suggests that the dual problem is to maximize the log likelihood of q as a function
of the Lagrange multipliers λ.
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