
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture # 18
Scribe: Shaoqing Yang April 10, 2014

1 Widrow-Hoff Algorithm

First let’s review the Widrow-Hoff algorithm that was covered from last lecture:

Algorithm 1: Widrow-Hoff Algorithm

Initialize parameter η > 0, w1 = 0
for t = 1 . . . T

get xt ∈ Rn
predict ŷt = wt · xt ∈ R
observe yt ∈ R
update wt+1 = wt − η(wt · xt − yt) · xt

And we define the loss functions as LA =
∑T

t=1(ŷt − yt)2. And Lu =
∑T

t=1(u · xt − yt).
What we want is

LA ≤ min
u
Lu + small

There are 2 goals in choosing the update function to be wt+1 = wt−η(wt · · ·xt−yt) ·xt: (1)
Want loss of wt+1 on xt, yt to be small. This means we want to minimize (wt+1 · xt − yt)2
(2) Want wt+1 close to wt so that we do not forget everything we learnt so far. And this
means we want to minimize ‖wt+1 −wt‖2.

Therefore to sum up, we want to minimize

η(wt+1 · xt − yt)2 + ‖wt+1 −wt‖2

If we take the derivative of the above equation and set it to zero, we have

wt+1 = wt − η(wt+1 · xt − yt) · xt

Instead of solving wt+1, we approximate the term wt+1 inside the parenthesis and change it
to wt. The reason we can do this is because wt+1 does not change much from wt. Therefore
we have

wt+1 = wt − η(wt · xt − yt) · xt
which is the update function stated in the algorithm.

Now let’s state a theorem:

Theorem 1.1 If we assume on every round t, ‖xt‖2 ≤ 1, then:

LWH ≤ min
u∈Rn

[
Lu

1− η
+
‖u‖22
η

]

From this theorem, we have ∀u:

LWH ≤
1

1− η
· Lu +

‖u‖22
η

If we divide T on both side, we have:

LWH

T
≤ 1

1− η
· Lu

T
+
‖u‖22
ηT

The term
‖u‖22
ηT goes to 0 when T gets large. And we can choose η small enough to make

1
1−η to be close to 1. Therefore we have the rate that the algorithm is suffering loss is close
to rate that Lu is suffering loss.

Now let’s prove the theorem:

Proof : Pick any u ∈ Rn. First let’s define some terms:

Φt = ‖wt − u‖22 (measure of progess)

lt = wt · xt − yt = ŷt − yt (notice l2t is the loss of WH on round t)

gt = u · xt − yt (g2t is the loss of u on round t)

∆t = η(wt · xt − yt) · xt = ηltxt

wt+1 = wt −∆t

Our main claim is that the change of potential is:

Φt+1 − Φt ≤ −ηl2t +
η

1− η
· g2t (1)

This shows that l2t tends to drive potential down while g2t tends to drive potential up.

Now assume (1) holds. Notice that total change in potential should be non-negative. And
also we initialize w1 = 0. So we have the following inequality:

−‖u‖22 = −Φ1 ≤ ΦT+1 − Φ1

= Φt+1 − Φt + Φt − Φt−1 + · · ·+ Φ2 − Φ1

=
T∑
t=1

(Φt+1 − Φt)

≤
T∑
t=1

[−ηl2t +
η

1− η
g2t]

= −η
∑
t

l2t +
η

1− η
∑
t

g2t

= −ηLWH +
η

1− η
Lu

Now we solve for LWH , we get

LWH ≤
1

1− η
Lu +

‖u‖22
η

2

And since this inequality holds for all u, we have:

LWH ≤ min
u∈R

[
1

1− η
Lu +

‖u‖22
η

]

which is the theorem.

Now let’s go back to prove (1):

Φt+1 − Φt = ‖wt+1 − u‖2 − ‖wt − u‖2

= ‖wt − u−∆t‖2 − ‖wt − u‖2

= ‖∆t‖2 − 2(wt − u) ·∆t + ‖wt − u‖2 − ‖wt − u‖2

= ‖∆t‖2 − 2(wt − u) ·∆t

= ‖∆‖2 − 2(w− u) ·∆ (dropping subscript t since it doesn’t affect the proof)

= η2l2‖x‖2 − 2ηlx · (w− u)

= η2l2‖x‖2 − 2ηl(w · x− u · x− y + y)

= η2l2‖x‖2 − 2ηl[(w · x− y)− (u · x− y)]

= η2l2‖x‖2 − 2ηl[l − g]

= η2l2‖x‖2 − 2ηl2 + 2ηlg

≤ η2l2 − 2ηl2 + 2ηlg (‖x‖2 ≤ 1)

≤ (η2 − 2η)l2 +
2η[g

2

1−η + l2(1− η)]

2
(ab ≤ a2+b2

2)

= (η2 − 2η)l2 + η[
g2

1− η
+ l2(1− η)]

= −ηl2 +
η

1− η
g2

2 Families of Online Algorithm

The two goals of the learning algorithm are minimizing the loss of wt+1 on xt and yt, and
minimizing the distance between wt+1 and wt. So to generalize, we are trying to minimize

ηL(wt+1,xt, yt) + d(wt+1,wt)

So if we use the Euclidean norm as our distance measurement, then the above function
becomes:

ηL(wt+1,xt, yt) + ‖wt −wt+1‖2

So if we try to optimize the above function, we have the update equation:

wt+1 = wt − η∇wL(wt+1,xt, yt)

≈ wt − η∇wL(wt,xt, yt)

Notice that we use wt to approximate wt+1 when we calculate wt+1. This is called the
Gradient Descent Algorithm.

3

Alternatively, we can use relative entropy as a measure of distance. So d(wt,wt+1) =
RE(wt‖wt+1). Now we can have the update function as

wt+1,i =
wt,i · exp(η ∂L(wt+1,xt,yt))

∂wi
)

Zt

This is called the Exponentiated Gradient Algorithm, or “EG” algorithm. We need to
change the norm: ‖xt‖∞ ≤ 1 and ‖u‖1 = 1. It’s also possible to prove a bound on this
update equation, but we skip it in this class.

3 Online Algorithm in a Batch Setting

We can modify the online algorithms slightly so that we can use them in the batch learning
settings. Let’s take a look at one example in a linear regression setting. In a linear regression
setting, training and test samples are drawn i.i.d from a fixed distribution D. So we have
S = 〈(x1, y1) . . . (xm, ym)〉 where (xi, yi) ∼ D. Our goal is to find v with low risk, where
risk is defined to be

Rv = E(x,y)∼D[(v · x− y)2]

We want to find v such that Rv is small compared to minuRu.

Now we can apply WH algorithm to the data as follows:
(1) run WH on (x1, y1), . . . , (xm, ym), and calculate w1,w2, . . . ,wm.

(2) Combine the vectors:

v =
1

m

m∑
t=1

wt

and output v. We choose to output the average of all the wt’s because we can prove some-
thing theoretically good about it, which is not necessarily the case for the last vector wm.

Now let’s state another theorem:

Theorem 3.1

ES [Rv] ≤ min
u∈Rn

[
Ru

1− η
+
‖u‖2

ηm
]

If we divide T on both side of the equation above and if η is chosen to be small, we can see
that Rv

T will be close to Ru
T when T is large. Proof:

There are three observations needed in the proof:

(1):
Let x, y be a random test example from D. Then we have

(v · x− y)2 ≤ 1

m

m∑
t=1

(wt · xt − y)2

4

Proof for (1):

(v · x− y)2 = [(
1

m

m∑
t=1

wt) · x− y]2

= [(
1

m

m∑
t=1

wt · x)− y]2

= [
1

m

m∑
t=1

(wt · x− y)]2

≤ 1

m

∑
t

(wt · x− y)2 (convexity of f(x) = x2)

(2):
E[(u · xt − yt)2] = E[(u · x− y)2]

The above expectation is with respect to the random choice of (x1, y1), . . . , (xm, ym) and
(x, y). This is because (xt, yt)and (x, y) are from the same distribution.

(3):

E[(wt · xt − yt)2] = E[(wt · x− y)2]

This is because wt only depends on the first t− 1 samples but doesn’t depend on (xt, yt).

Now let’s start the proof:

ES [Rv] = ES,(x,y)[(v · x− y)2]

≤ E[
1

m

∑
t

(wt · x− y)2] (using observation (1))

=
1

m

∑
t

E[(wt · x− y)2]

=
1

m

∑
t

E[(wt · xt − yt)2] (observation (3))

=
1

m
E[

∑
t

(wt · xt − yt)2]

≤ 1

m
E[

∑
t(u · xt − yt)2

1− η
+
‖u‖2

η
] (by WH bound)

=
1

m
[

∑
tE[(u · xt − yt)2]

1− η
+
‖u‖2

η
]

=
1

m
[

∑
tE[(u · x− y)2]

1− η
] +
‖u‖2

ηm
(by observation (2))

=
Ru

1− η
+
‖u‖2

ηm

and we have completed the proof.

5

