
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture # 15
Scribe: Jieming Mao April 1, 2013

1 Brief review

1.1 Learning with expert advice

Last time, we started to talk about “learning with expert advice”. This model is very
different from models we saw earlier in the semester. In this model, the learner can see only
one example at a time, and has to make predictions based on the advice of “experts” and
the history. Formally, the model can be written as

• N = # of experts

• for t = 1, · · · , T

− each expert i predicts ξi ∈ {0, 1}
− learner predicts ŷ ∈ {0, 1}
− learner observes y ∈ {0, 1}
− (mistake if y 6= ŷ)

In the previous lecture, we gave a “Halving algorithm” which works when there exists a
“perfect” expert. In this case, the number of mistakes that the “Halving algorithm” makes
is at most lg(N).

1.2 Connection with PAC learning

Now we consider an “analogue of the PAC learning model”:

• hypothesis space H = {h1, · · · , hN}

• target concept c ∈ H

• on each round

− get x

− predict ŷ

− observe c(x)

This problem is a very natural online learning problem. However, we can relate this problem
to “learning with expert advice” by considering each hypothesis hi as an expert. Since the
target concept is chosen inside the hypothesis space, we always have a “perfect” expert.
Therefore, we can apply the “Halving algorithm” to solving this problem and the “Halving
algorithm” will make at most lg(N) = lg(|H|) mistakes.



2 Bounding the number of mistakes

In the previous section, it is natural to ask whether the “Halving algorithm” is the best
possible. In order to answer this problem, we have to define what is “best”. Let A be any
deterministic algorithm, define

MA(H) = max
c,x

(# mistakes made by A)

MA(H) is the number of mistakes A will make on hypothesis space H in the worst case. An
algorithm is considered good if its MA(H) is small. Now define

opt(H) = min
A
MA(H).

We are going to lower bound opt(H) by V Cdim(H) as the following theorem:

Theorem 1. V Cdim(H) ≤ opt(H)

Proof: Let A be any deterministic algorithm. Let d = V Cdim(H). Let x1, ..., xd be
shattered by H. Now we can construct an adversarial strategy that forces A to make d
mistakes as following:

• for t = 1, · · · , d

- present xt to A

- ŷt = A’s prediction

- choose yt 6= ŷt.

Since x1, ..., xd is shattered by H, we know there exists a concept c ∈ H, such that c(xt) = yt
for all t. In addition, since A is deterministic, we can simulate it ahead of time. Therefore
such adversarial construction is possible. Thus there exists an adversarial strategy to force
A to make d mistakes.

To sum up this section, we have the following result,

V Cdim(H) ≤ opt(H) ≤MHalving(H) ≤ lg(|H|).

3 Weighted majority algorithm

Now we are going back to “learning with expert advice” and we want to devise algorithms
when there is no “perfect” expert. In this setting, we will compare the number of mistakes of
our algorithm and the number of mistakes of the best expert. Here we modify the “Halving
algorithm” to get an algorithm when there is no “perfect” expert. Instead of discarding
experts, we will keep a weight for each expert and lower it when this expert makes a mistake.
We call this algorithm weighted majority algorithm:

• wi = weight on expert i

• Parameter 0 ≤ β < 1

• N = # of experts
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• Initially ∀i, wi = 1

• for t = 1, · · · , T

- each expert i predicts ξi ∈ {0, 1}
- q0 =

∑
i:ξi=0wi, q1 =

∑
i:ξi=1wi.

- learner predicts ŷ ∈ {0, 1}

- ŷ =

{
1 if q1 > q0

0 else
(weighted majority vote)

- learner observes y ∈ {0, 1}
- (mistake if y 6= ŷ)

- for each i, if ξi 6= y, then wi ← wiβ

Now we are going to analyze weighted majority algorithm(WMA) by proving the fol-
lowing theorem:

Theorem 2. (# of mistakes of WMA) ≤ aβ(# of mistakes of the best expert) +cβ lg(N),

where aβ = lg(1/β)

lg( 2
1+β

)
and cβ = 1

lg( 2
1+β

)
.

Before proving this theorem, let’s first try to understand what this theorem implies.
The following table gives a good understanding of the parameter:

β aβ cβ
1/2 ≈ 2.4 ≈ 2.4
0 +∞ 1
→ 1 2 +∞

If we divide both sides of the inequality by T , we get

(# of mistakes of WMA)

T
≤
aβ(# of mistakes of the best expert)

T
+
cβ lg(N)

T

When T → +∞,
cβ lg(N)

T → 0. Then this theorem means that the rate that WMA makes
mistakes is bounded by a constant times the rate that the best expert makes mistakes.
Proof: Define W as the sum of the weights of all the experts: W =

∑N
i=1wi. Initially, we

have W = N . Now we consider how W changes in some round. On some round, without
loss of generality, we assume that y = 0. Then

Wnew =

N∑
i=1

wnewi

=
∑
i:ξi=1

wiβ +
∑
i:ξi=0

wi

= q1β + q0

= q1β + (W − q1)
= W − (1− β)q1
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Now suppose WMA makes a mistake. Then

ŷ 6= y ⇒ ŷ = 1⇒ q1 ≥ q0

⇒ q1 ≥
W

2

⇒ Wnew ≤W − (1− β)
W

2
= (

1 + β

2
)W

So if WMA makes a mistake, the sum of weights W will decrease by multiplying 1+β
2 .

Therefore, after m mistakes, we get an upper bound of the sum of weights as

W ≤ N · (1 + β

2
)m.

Define Li to be the number of mistakes that expert i makes. Then we have

∀i, wi = βLi ≤W ≤ N · (1 + β

2
)m.

Solving this inequality, and noting that it holds for all experts i, we get

m ≤ (mini Li) lg(1/β) + lg(N)

lg( 2
1+β )

.

4 Randomized weighted majority algorithm

The previous proof has shown that, at best, the number of mistakes of WMA is at most twice
the number of mistakes of the best expert. This is a weak result if the best expert actually
makes a substantial number of mistakes. In order to get a better algorithm, we have to
introduce randomness. The next algorithm we are going to introduce is called randomized
weighted majority algorithm. This algorithm is very similar to weighted majority algorithm.
The only difference is that rather than making prediction by weighted majority vote, in each
round, the algorithm picks an expert with some probability according to its weight, and
uses that randomly chosen expert to make its prediction. The algorithm is as following:

• wi = weight on expert i

• Parameter 0 ≤ β < 1

• N = # of experts

• Initially ∀i, wi = 1

• for t = 1, · · · , T

- each expert i predicts ξi ∈ {0, 1}
- q0 =

∑
i:ξi=0wi, q1 =

∑
i:ξi=1wi.

- learner predicts ŷ ∈ {0, 1}
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- ŷ =


1 with probability

∑
i:ξi=1wi

W
=
q1
W

0 with probability

∑
i:ξi=0wi

W
=
q0
W

- learner observes y ∈ {0, 1}
- (mistake if y 6= ŷ)

- for each i, if ξi 6= y, then wi ← wiβ

Now let’s analyze randomized weight majority algorithm(RWMA) by proving the following
theorem:

Theorem 3. E(# of mistakes of RWMA) ≤ aβ(# of mistakes of the best expert) +cβ ln(N),

where aβ = ln(1/β)
1−β and cβ = 1

1−β .

Notice here we are considering the expectation of number of mistakes RMWA makes
because RMWA is a randomized algorithm. When β → 1, aβ → 1. This means RMWA
can do really close to the optimal.
Proof: Similar to the proof of the previous theorem, we prove this theorem by considering
the sum of weights W . On some round, define l as the probability that RWMA makes a
mistake:

l = Pr[ŷ 6= y] =

∑
i:ξi 6=y wi

W
.

Then the weight in this round is changed as

Wnew =
∑
i:ξi 6=y

wiβ +
∑
i:ξi=y

wi

= lWβ + (1− l)W
= W (1− l(1− β))

Then we can write the sum of weights at the end as

Wfinal = N · (1− l1(1− β)) · · · (1− lt(1− β))

≤ N
T∏
t=1

exp(−lt(1− β))

= N · exp(−(1− β)

T∑
t=1

lt)

Then we have

βLi ≤ wi ≤Wfinal ≤ N · exp(−(1− β)
T∑
t=1

lt).

Define LA =
∑T

t=1 lt as the expected number of mistakes RWMA makes. We have

LA =

T∑
t=1

lt ≤
ln(1/β)

1− β
(#of mistakes of the best expert) +

1

1− β
lnN.
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5 Variant of RWMA

Let’s first discuss how to choose the parameter β for RWMA. Suppose we have an upper
on the number of mistakes that the best expert makes as mini Li ≤ K, then we can choose
β as 1

1+
√

2 ln(N)
K

. Then we have

LA ≤ min
i
Li +

√
2K ln(N) + ln(N).

It is natural to ask whether we can do better than RWMA. The answer is yes. The high
level idea is to work in the middle of WMA and RWMA. The following figure shows how
this algorithm works. The y-axis is the probability of predicting ŷ as 1. And the x-axis is
the weighted fraction of experts predicting 1. The red line is WMA, the blue line is RWMA,
and the green line is the new algorithm.

The new algorithm can reach aβ = ln(1/β)

2 ln( 2
1+β

)
and cβ = 1

2 ln( 2
1+β

)
. These are exactly half of

those of WMA. And if we make the assumption that mini Li ≤ K again, the new algorithm
has

LA ≤ min
i
Li +

√
K ln(N) +

lg(N)

2
.

If we set K = 0 which means there exists a “perfect” expert, we have

LA ≤
lg(N)

2

Thus we know this algorithm is better than the “Halving algorithm”.
We usually can assume that K = T

2 by adding two experts: one always predicts 1 and
the other always predicts 0. Then we have

LA ≤ min
i
Li +

√
T ln(N)

2
+

lg(N)

2
.
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If we divide both sides by T , we get

LA
T
≤ mini Li

T
+

√
ln(N)

2T
+

lg(N)

2T
.

When T gets large, the right hand side of the inequality is dominated by the term

√
ln(N)
2T .

6 Lower bound

Finally we are going to give a lower bound for “learning with expert advice”. This lower
bound matches the upper bound we get from the previous section even for constant factors.
So this lower bound is tight and we cannot improve the algorithm in the previous section.

To prove the lower bound, we consider the following scenario:

• On each round, the adversary chooses the prediction of each expert randomly, ξi ={
1 w.p. 1/2

0 w.p. 1/2

• On each round, the adversary chooses the feedback randomly, y =

{
1 w.p. 1/2

0 w.p. 1/2

For any learning algorithm A,

Ey,ξ[LA] = Eξ[Ey[LA|ξ]] = T/2.

For any expert i, we have
E[Li] = T/2.

However, we can prove that

E[min
i
Li] ≈

T

2
−
√
T ln(N)

2
.

Thus,

E[LA]− E[min
i
Li] ≥

√
T ln(N)

2
.

The term

√
T ln(N)

2 meets the dominating term in the previous section. Also, in the proof of
the lower bound, the adversary only uses entirely random expert predictions and outcomes.
So we would not gain anything by assuming that the data is random rather than adversarial.
The bounds we proved in an adversarial setting are just as good as could possibly be obtained
even if we assumed that the data are entirely random.
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