
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #14
Scribe: Li-Fang (Fanny) Cheng March 27, 2014

1 SVM

1.1 A brief review

Figure 1: An illustration of the key idea of SVM for linearly separable data.

As discussed in the previous lecture, the key idea of support vector machine (SVM) is
to find a hyperplane that can separate the given data. Figure 1 illustrates this idea when
the data is linearly separable. The hyperplane is defined by a unit normal vector v, and if
we suppose the hyperplane passes through the origin, we can formulate the prediction of a
data point x as

y = sign (v · x)
The distance from a data point to the hyperplane in the “right” direction is called the

margin:
margin(x, y) = y (v · x)

For a given labeled data set (xi, yi), i = 1, · · ·m, we define the smallest margin δ as

δ = min
i
yi (v · xi)

Our objective is to find a hyperplane with maximized δ by solving convex optimization
problems. Figure 2 gives a summary of both the primal convex optimization problem and
its dual form.

The next question we would like to ask is what kinds of operations do we need for each
sample when solving the optimization problems. According to Equation 1, we can tell that
the dot product, (xi · xj), is the only computation we need for each sample when solving
the dual SVM problem.

Goal of SVM problem: find v to maximize δ

define w =
v

δ
⇒ v =

w

‖w‖

Primal Form (Linearly Separable):

min
1

2
‖w‖2

s.t. ∀i : yi(w · xi) ≥ 1

Dual Form (Linearly Separable):

w =
∑

i

αiyixi

max
∑

i

αi −
1

2

∑

i

∑

j

αiαjyiyj(xi · xj) (1)

s.t. ∀i : αi ≥ 0

Primal Form (Soft Margin):

min
1

2
‖w‖2 + C ·

∑

i

ξi (2)

s.t. ∀i : yi(w · xi) ≥ 1− ξi (3)

ξi ≥ 0 (4)

Figure 2: The primal and dual SVM problems.

Sometimes there is a case that the data is linearly inseparable. If the data is “almost”
linearly separable, we can use the soft margin SVM. In this case, we allow the hyperplane to
make a few mistakes in classification by moving some data points slightly. The optimization
problem is then reformulated in Equation 2 to 4, as discussed in the previous lecture.

1.2 More on Linearly Inseparable Data

What can we do if the data is just too far from linearly separable as is the case in Figure
4? In this situation, we have to look for another solution. We map the data to a higher
dimensional space where the data can be linearly separable. Here follows an example.

Suppose the original data is in 2-dimensional space; we can use the following method to
map it into 6 dimensional space:

x = (x1, x2) 7→ ψ(x) = (1, x1, x2, x1x2, x
2
1, x

2
2) (5)

2

Figure 3: An illustration of the soft margin SVM for nearly linearly separable data.

The new hyperplane consists of the points that v · ψ(x) = 0, which is written as:

a+ bx1 + cx2 + dx1x2 + ex21 + fx22 = 0 (6)

where v = (a, b, c, d, e, f). Equation 6 defines a hyperplane in the 6-dimensional space,
while in the original 2-dimensional space, it is the general equation for a conic section, that
is, a line, circle, ellipse, parabola or hyperbola. Therefore, by this mapping, we are able
to separate the 2-dimensional data in the 6-dimensional space. Figure 5 shows a possible
6-dimensional hyperplane that has the form of an ellipse in the 2-dimensional space for
classification.

The method described above can be generalized. If we start with n dimensional space,
by adding up all terms of degree at most k, we can have O(nk) dimensional space.

Next, we have to notice possible problems when adopting this approach. There are a
statistical problem and a computational problem:

• Statistical Problem: According to the results above, if we start from 100 dimensions,
it is possible that we reach more than a trillion dimensions. That is, we will have
more parameters to train and the complexity of the hypothesis will be higher. In this
case, we generally need more samples to achieve better fitting results. If we have too
few samples, the algorithm overfits easily.

• Computational Problem: The storage space of the data is in proportion to the number
of dimensions. It would take too much time to even read the data if the dimension
after mapping is too high.

However, SVM can overcome both kinds of problems. First, for the statistical problem,
we use the result that

VC-dimension ≤
(

R

δ

)2

, (7)

where R is the radius of the sphere that contains all the data, and δ is the margin. We
should notice that VC-dimension does not depend on the number of dimensions of the data.
Therefore, although increasing the dimension of data might increase R, generally δ also gets
larger. That is, we can expect that VC-dimension is not growing so fast.

3

Figure 4: A non-linearly separable data set in R
2.

Figure 5: Finding an ellipse to separate the data by mapping from R
2 to R

6.

For the computational problem, recall the previous observation that for each sample, we
only need to compute the inner products. Therefore after the mapping, the computation
for two samples x and z is:

ψ(x) · ψ(z)
However, based on the numbers we gave above (mapping from 100 dimensions to a trillion
dimensions), the computation could become really slow if the dimension gets too high. We
will talk about how to relieve this problem in SVM.

1.3 The kernel trick

We first revisit the mapping function described in Equation 5. Suppose now we modify the
mapping function ψ(x) as:

x = (x1, x2) 7→ ψ(x) = (1,
√
2x1,

√
2x2,

√
2x1x2, x

2
1, x

2
2) (8)

Since we only change the constant for some terms, this does not affect the hyperplane we
can represent after mapping. However, the inner product for ψ(x) and ψ(z) becomes:

4

ψ(x) · ψ(z) = 1 + 2x1z1 + 2x2z2 + 2x1z1x2z2 + (x1z1)
2 + (x2z2)

2

= (1 + x1z1 + x2z2)
2

= (1 + x · z)2
(9)

That is, if original dimension is n, by adding all terms of degree at most k, we have

ψ(x) · ψ(z) = (1 + x · z)k = K(x, z) (10)

The computation complexity is now O(n) instead of O(nk), and the computational
problem can be relieved.

The result shown above indicates that it is possible to calculate the inner product in
higher dimensional space using only the inner product in lower dimensional space under
some specific mapping. Generally, we define a kernel function K(x, z) = ψ(x) · ψ(z) for
the mapping ψ with this property. By replacing the inner product (xi · xj) in Equation
1 with K(xi,xj), we can obtain the higher dimensional hyperplane as the solution. This
method is called the kernel trick. There are different kinds of kernels in practice. The
kernel function shown in Equation 10 is called the polynomial kernel. Another popular
kernel is Gaussian radial basis function (RBF) kernel K(x, z) = exp

(

−c · ‖x− z‖2
)

, whose
dimension is infinite. Another thing we should notice is that the input to the kernel function
x and z are not necessarily vectors. For instance, x and z can be entirely different kinds
of objects, such as strings or trees, as long as the kernel function provides the mapping of
inner product for them.

In summary, our objective for solving SVM problem is to maximize the margin δ. When
the data is linearly inseparable, we can deal with it by combining the kernel trick and the
soft margin approach.

1.4 Comparison of SVM and boosting

We can now compare SVM with boosting. In SVM, we treat the input data as points in
Euclidean space: x ∈ R

n. As discussed in the previous lecture, it is natural to assume
‖x‖2 ≤ 1. In boosting, we never really touch the data. Instead, what we manipulate are the
weak hypotheses. To make things simple, suppose we use a finite weak hypothesis spaceH =
{g1(x), · · · , gN (x)} and the input can be viewed as the vector h(x) = 〈g1(x), · · · , gN (x)〉.
Recall that the infinity norm for a vector z is defined as ‖z‖∞ = maxj |zj |. Therefore, we
have ‖h(x)‖∞ = maxj |gj(x)| = 1 since gj(x) ∈ {−1,+1}.

Next, we compare the coefficients to compute and the predictions. In SVM, the algo-
rithm computes the unit normal vector v for the hyperplane, and the prediction is sign(v·x).
In boosting, the algorithm computes the coefficient αt ≥ 0 for the weak hypothesis ht ∈ H.

Suppose we run the boosting algorithm for T times, the prediction sign
(∑

T

t=1
αtht(x)

∑
T

t
αt

)

is

a convex combination of ht. Since each ht ∈ H = {g1(x), · · · , gN (x)}, we can rewrite the
prediction into another convex combination of gj(x) by finding the corresponding weight
aj :

(

∑T
t=1 αtht(x)
∑T

t αt

)

=

N
∑

j=1

ajgj(x) = a · h(x),

where a = 〈a1, · · · , aN 〉. It should be noted that
∑N

j=1 |aj | = ‖a‖1 = 1, where aj ≥ 0.
Therefore, the goal of boosting can be viewed as finding aj for each gj , and the prediction
for sample x is sign (a · h(x)).

5

SVM AdaBoost

input x ∈ R
n, ‖x‖2 ≤ 1 h(x), ‖h(x)‖∞ = 1

finds ‖v‖2 = 1 ‖a‖1 = 1, a = 〈a1, · · · , aN 〉
prediction sign(v · x) sign (a · h(x)) = sign

(

∑N
j=1 ajgj(x)

)

margin y(v · x) y (a · h(x))

Figure 6: Comparison of SVM and Boosting.

Finally, we compare the margin of both SVM and boosting algorithms. The margin of
SVM is y (v · x), while in boosting it is y (a · h(x)). The goal of both SVM and AdaBoost is
to maximize the margin, but the norms that are used here are different: in SVM’s, ‖v‖2 = 1
and ‖x‖2 = 1, while in boosting, ‖a‖1 = 1 and ‖h(x)‖∞ = 1.

The summary of the comparisons described above are listed in Figure 6.

2 Online Learning

2.1 Introduction

So far we have focused on the PAC learning model. We assume there is a fixed distribution
for both the training and testing data, and the training samples are selected randomly.
The algorithms we have discussed are batch learning algorithms, which means that after
training, the hypothesis is fixed and then used for all future testing samples. Now we move
on to online learning. The following are some properties of online learning. First, both
training and testing happen at the same time in online learning. The learner gets one
training sample at a time, makes the prediction, and then gets the true result as feedback.
An example is to predict the stock market. In the morning the online learner makes a
prediction about whether the price will go up or down, and then after one day it can receive
the true situation and adjust future prediction. Second, the online learning algorithms tend
to be simple. Third, online learning model makes no assumption about the distribution of
the data, and can even completely drop the assumption that the data is generated randomly.
In the following and future lectures, we will show that even without these assumptions, we
can still analyze online learning algorithms in a meaningful way.

2.2 Learning with expert advice

We start from looking at an example of the stock market. Figure 7 gives the setting of
the example. Suppose there are four experts who will make predictions for the price every
morning, and the learner makes the prediction based on the four predictions. The goal of
the learner is to provide the performance as good as, or at least not too much worse, than
the best expert after a certain amount of time. This general setting is called “learning with
expert advice” and is formulated as below:

N = # of experts
for t = 1, · · · , T
each expert i predicts ξi ∈ {0, 1} ,
learner predicts ŷ ∈ {0, 1} ,
observe outcome y ∈ {0, 1} (mistake if ŷ 6= y).

6

Experts Learner (Master) Outcome
1 2 3 4

day 1 ↑ ↑ ↓ ↑ ↑ ↑
day 2 ↓ ↑ ↑ ↓ ↓ ↑

...
...

...
...

...
...

...

of mistakes 37 12 67 50 18

Figure 7: The stock market example.

We would like to relate the number of mistakes of the learner to the number of mistakes
of the best expert. However, the learner does not know which expert is the best. In the
case assuming at least one expert is perfect, we can adopt a simple algorithm described as
below:

ŷ = majority vote of experts with no mistakes so far

This method is called the “Halving algorithm”. To give a more concrete idea about how
it works, we revisit the stock market example in Figure 7. In the first day, expert 3 made a
mistake, so the learner does not take the prediction of expert 3 into account starting from
the second day.

Now we can calculate the mistake bound of the Halving algorithm as follows. Let W be
the number of experts that make no mistake so far, or we say the number of active experts.
Initially we have W = N . After the learner made one mistake, we have W ≤ 1

2N because
there are at least half of the active experts that made this mistake. Similarly, after the
learner made the second mistake, W ≤ 1

4N , and so on. After the learner made m mistakes,
we have W ≤ 1

2mN . Due to the assumption that at least one expert is perfect, we have
W ≥ 1. That is,

1 ≤W ≤ 1

2m
N ⇒ m ≤ lg (N).

Finally, we can consider a special case in which we view each expert as one hypothesis.
Suppose we have a hypothesis space H = {h1, · · · , hN}, and the target concept c ∈ H.
By adopting the Halving algorithm, each round the learner gets one sample x, makes the
prediction ŷ ∈ {0, 1}, and then observes the true result y = c(x). We then have the following
mistake bound:

of mistakes ≤ lg(N) = lg(|H|).

7

