COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #9
Scribe: Bebe Shi March 4, 2013

1 Techniques that Handle Overfitting

e Cross Validation:
Hold out part of the training data and use it as a proxy for the generalization error
Disadvatages: 1. Wastes data. 2. Time-consuming because a lot of the variants of
cross validation involve doing multiple splits on data for training and validation and
running the algorithm multiple times.

e Structural Risk Minimization:
Earlier, we found an upper bound on the generalization error in the following form.
Under usual assumptions, with probability at least 1 - §, VA € ‘H and |H| < oo,
1
err(h) <err(h)+ O 7ln|Hl7—:n(5)
This technique tries to minimize the entire right-hand side of the inequality.

e Regularization
This general family of techniques is closely related to structural risk minimization.
It minimizes expressions of the form err 4+ constant x “complexity”

e Algorithms that tend to resist overfitting

2 Rademacher Complexity

We have already learned about using the growth function and VC-dimesion as complexity
measures for infinite hypothesis spaces. Today, we are going to introduce a more modern and
elegant complexity measure called the Rademacher complexity. This technique subsumes
the previous techniques in the sense that the previous bounds we found using |H|, the
growth function or the VC-dimesion would fall out as special cases of the new measure.

2.1

We start by laying down the setups of Rademacher complexity.

Sample S = ((z1,y1),s -, (Tm, Ym)), ¥vi € {—1,1}. We are using {—1,1} here instead of
{0, 1}, in order to make the math come out nicer.

hypothesis h : X — {—1,1}
Here, we're providing an alternative definition for training error.

m

err(h) = - 3 1{h(z:) # i) 1)

i=1

ef’r(h):;Zl_y;h(l =35~ 212 (2)

i=1

Equation (2) is reached because y;h(x;) equals 1 when y; = h(x;) and y;h(z;) equals —1
when y; # h(x;).

% Z yih(z;) =1 — 2err(h) (3)
=1

Training error is a reasonable measure of how well a single hypothesis fits the data set.
From equation (3), we can see that in order to minimize the training error, we can simply
m

maximize = Y y;h(z;).
i=1

2.2

Now, let us introduce a random label for data i, which we name o; and which is also known
as a Rademacher random variable.

(4)

—1, with probability 1/2.
o; =
* | +1, with probability 1/2.

We can use this random label to form a complexity measure for H that is independent
of the real labels of S.

max— ZO’Z .’BZ (5)

“YheH m

Equation (5) intuitively measures the complexity of H. Notice that we can find the range
of this measure using two extreme cases.

e H = {ho}: because there is only one hypothesis, max is not used. We then arrive at
the expectation of 0.

e S is shattered by H: In this case, we can always find a hypothesis that matches all
o;. Thus, the expected value is 1.

We now know that this measure ranges from 0 to 1.

2.3

We now replace H with F, a family of functions f: Z — R. This generalizes our hypotheses
to real-valued functions.

Sample S = (21, ..., 2m), 2 € Z.

The definition for the empirical Rademacher complexity is

A~

Re(F) = Bofsup — 3 01 f ()] (6)

m
feFr =1

Notice we replaced max by sup (supremum) because max might not exist when taken over
an infinite number of functions. Supremum takes the least upper bound. For example,
sup{.9,.99,.999, ...} = 1.

In order to find a measure with respect to the distribution D over Z, we take the ex-
pected value of the empirical Rademacher complexity and arrive at the definition for the
expected Rademacher complexity, i.e., Rademacher complexity — equation (7).

Run(F) = Es[Ry(F)] (7)

S = (z1,.y2m), 2i ~ D

3 Generalization Bounds Based on Rademacher Complexity

Theorem

Let F be a family of functions f : 2 — [0,1]. Assume § = (21,..., 2, 1.i.d and z; ~ D.
Define Es[f] = 2 3 f(2), E[f] = E.wplf(2)]. (Es[f] is similar to the idea of the training

(3
error and E[f] is similar to the idea of the generalization error)

With probability at least 1 — 4, Vf € F,

1
BIf) < Bslf] + 2R, (F) + 0y 2 ®
1
BLf) < Eslf) + 2Ro(F) + 01 3)
Proof
We want to bound the following random variable:
®(S) = sup(E[f] — Es[f]) (10)

ferF

Step 1
Using the definitions, we get:

8(S) = sup(E[f] — Eslf)) = sup(Elf] - = 3 7(z1) (1)

fer ferF

Since f(z;) € [0,1], changing any z; value to z, can only change % > f(z:)) by at most %,
i
and therefore ®(S) by at most 2. This means that ®(S) satisfies the condition for McDi-

armid’s inequality, in that |®(z1, ..., 2i, ..., 2m) — ®(21, ..., 2}, ..o, 2m)| < ¢, where ¢; = %

McDiarmid’s inequality states that with probability at least 1 — 4§
_9¢2
Prlf (1, o m) = E[f (X1, Xin)] 2 €] < exp(5522)

Applying McDiarmid’s inequality, we get:
With probability at least 1 — 9

In(3)

o(S) < Bs[(S)] + |5 2

Step 2

Let us define a ghost sample §" = (21, ..., z;,), z; ~ D. We aim to show that E[®(S)] <
Es.s/[sup(Es [f] = Es[f])].
feF

Es|Es/|f]] = E[f] (13)

Equation (13) is true because the expected value of the random variable Eg/[f] over all
samples S’ is E[f].
Es[Es[f]] = Es|f] (14)

Equation (14) is true because the random variable Es[f] is independent of &

Therefore,

~

E[®(S)] = ES[?EE(EM — Es[f])]
= Es[sup(Es/[Es[f] — Es[f]])]
feF
< Ess/[sup(Es|[f] — Es[f])]
feF

The last inequality is true because the expected value of the max of some function is
at least the max of the expected value of the function.

Step 3

Continuing the ghost sampling technique, we now try to obtain two new samples 7 and 7’
by running through the following mechanism on S and §.

fori=1,....m
with probability 1/2: swap z;, z.
else: leave alone

7T, T’ = resulting samples

. . 1 (f(z) — f(#)), with probability 1/2
Erlf] = Brlf] = m Z {(f(z;) — f(z)), with probability 1/2. (15)

Erlf] - Brlf) = = Yol (D) - 7 () (16)

We know that 7, 7' ~ S, &’ (equally distributed) because S, S’ are i.i.d samples from the
distribution D.

Therefore, Sup(ng [f] — Es[f]) ~ SUP(% ZUz(f(ZD — f(z1)))-
feF feF 7

Then, if we take the expected values of the two expressions over S, S’ and o;, the values
should equal to each other.

Equation (17) shows the conclusion for step 3.

Es slsup(Fslf] ~ Bolf)) = Bssrolp(L STofG — SN ()

