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1 Techniques that Handle Overfitting

• Cross Validation:
Hold out part of the training data and use it as a proxy for the generalization error
Disadvatages: 1. Wastes data. 2. Time-consuming because a lot of the variants of
cross validation involve doing multiple splits on data for training and validation and
running the algorithm multiple times.

• Structural Risk Minimization:
Earlier, we found an upper bound on the generalization error in the following form.
Under usual assumptions, with probability at least 1 - δ, ∀h ∈ H and |H| <∞,

err(h) ≤ ˆerr(h) +O

√
ln|H|+ln( 1

δ
)

m
This technique tries to minimize the entire right-hand side of the inequality.

• Regularization
This general family of techniques is closely related to structural risk minimization.
It minimizes expressions of the form ˆerr + constant × “complexity”

• Algorithms that tend to resist overfitting

2 Rademacher Complexity

We have already learned about using the growth function and VC-dimesion as complexity
measures for infinite hypothesis spaces. Today, we are going to introduce a more modern and
elegant complexity measure called the Rademacher complexity. This technique subsumes
the previous techniques in the sense that the previous bounds we found using |H|, the
growth function or the VC-dimesion would fall out as special cases of the new measure.

2.1

We start by laying down the setups of Rademacher complexity.

Sample S = 〈(x1, y1), ..., (xm, ym)〉, yi ∈ {−1, 1}. We are using {−1, 1} here instead of
{0, 1}, in order to make the math come out nicer.

hypothesis h : X → {−1, 1}
Here, we’re providing an alternative definition for training error.

ˆerr(h) =
1
m

m∑
i=1

1{h(xi) 6= yi} (1)



ˆerr(h) =
1
m

m∑
i=1

1− yih(xi)
2

=
1
2
− 1

2m

m∑
i=1

yih(xi) (2)

Equation (2) is reached because yih(xi) equals 1 when yi = h(xi) and yih(xi) equals −1
when yi 6= h(xi).

1
m

m∑
i=1

yih(xi) = 1− 2 ˆerr(h) (3)

Training error is a reasonable measure of how well a single hypothesis fits the data set.
From equation (3), we can see that in order to minimize the training error, we can simply

maximize 1
m

m∑
i=1

yih(xi).

2.2

Now, let us introduce a random label for data i, which we name σi and which is also known
as a Rademacher random variable.

σi =

{
−1, with probability 1/2.
+1, with probability 1/2.

(4)

We can use this random label to form a complexity measure for H that is independent
of the real labels of S.

Eσ[max
h∈H

1
m

∑
i

σih(xi)] (5)

Equation (5) intuitively measures the complexity of H. Notice that we can find the range
of this measure using two extreme cases.

• H = {h0}: because there is only one hypothesis, max is not used. We then arrive at
the expectation of 0.

• S is shattered by H: In this case, we can always find a hypothesis that matches all
σi. Thus, the expected value is 1.

We now know that this measure ranges from 0 to 1.
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2.3

We now replace H with F , a family of functions f : Z → R. This generalizes our hypotheses
to real-valued functions.

Sample S = 〈z1, ..., zm〉, zi ∈ Z.

The definition for the empirical Rademacher complexity is

R̂S(F) = Eσ[sup
f∈F

1
m

m∑
i=1

σif(zi)] (6)

Notice we replaced max by sup (supremum) because max might not exist when taken over
an infinite number of functions. Supremum takes the least upper bound. For example,
sup{.9, .99, .999, ...} = 1.

In order to find a measure with respect to the distribution D over Z, we take the ex-
pected value of the empirical Rademacher complexity and arrive at the definition for the
expected Rademacher complexity, i.e., Rademacher complexity — equation (7).

Rm(F) = Es[R̂s(F)] (7)

S = 〈z1, ..., zm〉, zi ∼ D

3 Generalization Bounds Based on Rademacher Complexity

Theorem

Let F be a family of functions f : Z → [0, 1]. Assume S = 〈z1, ..., zm〉, i.i.d and zi ∼ D.
Define ÊS [f ] = 1

m

∑
i
f(zi), E[f ] = Ez∼D[f(z)]. (ÊS [f ] is similar to the idea of the training

error and E[f ] is similar to the idea of the generalization error)

With probability at least 1− δ, ∀f ∈ F ,

E[f ] ≤ ÊS [f ] + 2Rm(F) +O

√
ln(1

δ )
m

(8)

E[f ] ≤ ÊS [f ] + 2R̂S(F) +O

√
ln(1

δ )
m

(9)

Proof

We want to bound the following random variable:

Φ(S) = sup
f∈F

(E[f ]− ÊS [f ]) (10)
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Step 1

Using the definitions, we get:

Φ(S) = sup
f∈F

(E[f ]− ÊS [f ]) = sup
f∈F

(E[f ]− 1
m

∑
i

f(zi)) (11)

Since f(zi) ∈ [0, 1], changing any zi value to z′i can only change 1
m

∑
i
f(zi)) by at most 1

m ,

and therefore Φ(S) by at most 1
m . This means that Φ(S) satisfies the condition for McDi-

armid’s inequality, in that |Φ(z1, ..., zi, ..., zm)− Φ(z1, ..., z′i, ..., zm)| ≤ ci, where ci = 1
m .

McDiarmid’s inequality states that with probability at least 1− δ
Pr[f(x1, ..., xm)− E[f(X1, ..., Xm)] ≥ ε] ≤ exp( −2ε2Pm

i=1 c
2
i
)

Applying McDiarmid’s inequality, we get:
With probability at least 1− δ

Φ(S) ≤ ES [Φ(S)] +

√
ln(1

δ )
2m

(12)

Step 2

Let us define a ghost sample S ′ = 〈z′1, ..., z′m〉, z′i ∼ D. We aim to show that E[Φ(S)] ≤
ES,S′ [sup

f∈F
(ÊS′ [f ]− ÊS [f ])].

ES′ [ÊS′ [f ]] = E[f ] (13)

Equation (13) is true because the expected value of the random variable ÊS′ [f ] over all
samples S ′ is E[f ].

ES′ [ÊS [f ]] = ÊS [f ] (14)

Equation (14) is true because the random variable ÊS [f ] is independent of S ′.

Therefore,

E[Φ(S)] = ES [sup
f∈F

(E[f ]− ÊS [f ])]

= ES [sup
f∈F

(ES′ [ÊS′ [f ]− ÊS [f ]])]

≤ ES,S′ [sup
f∈F

(ÊS′ [f ]− ÊS [f ])]

The last inequality is true because the expected value of the max of some function is
at least the max of the expected value of the function.
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Step 3

Continuing the ghost sampling technique, we now try to obtain two new samples T and T ′
by running through the following mechanism on S and S ′.

for i = 1, ...,m
with probability 1/2: swap zi, z′i
else: leave alone

T , T ′ = resulting samples

ÊT ′ [f ]− ÊT [f ] =
1
m

∑
i

{
(f(zi)− f(z′i)), with probability 1/2
(f(z′i)− f(zi)), with probability 1/2.

(15)

=⇒
ÊT ′ [f ]− ÊT [f ] =

1
m

∑
i

σi(f(z′i)− f(zi)) (16)

We know that T , T ′ ∼ S, S ′ (equally distributed) because S, S ′ are i.i.d samples from the
distribution D.
Therefore, sup

f∈F
(ÊS′ [f ]− ÊS [f ]) ∼ sup

f∈F
( 1
m

∑
i
σi(f(z′i)− f(zi))).

Then, if we take the expected values of the two expressions over S, S ′ and σi, the values
should equal to each other.

Equation (17) shows the conclusion for step 3.

ES,S′ [sup
f∈F

(ÊS′ [f ]− ÊS [f ])] = ES,S′,σ[sup
f∈F

(
1
m

∑
i

σi(f(z′i)− f(zi)))] (17)
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