COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Scribe: Bebe Shi

1 Techniques that Handle Overfitting

• Cross Validation:

Hold out part of the training data and use it as a proxy for the generalization error Disadvatages: 1. Wastes data. 2. Time-consuming because a lot of the variants of cross validation involve doing multiple splits on data for training and validation and running the algorithm multiple times.

• Structural Risk Minimization:

Earlier, we found an upper bound on the generalization error in the following form. Under usual assumptions, with probability at least 1 - δ , $\forall h \in \mathcal{H}$ and $|\mathcal{H}| < \infty$,

 $err(h) \le e\hat{r}r(h) + O\sqrt{\frac{\ln|\mathcal{H}| + \ln(\frac{1}{\delta})}{m}}$

This technique tries to minimize the entire right-hand side of the inequality.

• Regularization

This general family of techniques is closely related to structural risk minimization. It minimizes expressions of the form $e\hat{r}r$ + constant × "complexity"

• Algorithms that tend to resist overfitting

2 Rademacher Complexity

We have already learned about using the growth function and VC-dimesion as complexity measures for infinite hypothesis spaces. Today, we are going to introduce a more modern and elegant complexity measure called the Rademacher complexity. This technique subsumes the previous techniques in the sense that the previous bounds we found using $|\mathcal{H}|$, the growth function or the VC-dimesion would fall out as special cases of the new measure.

$\mathbf{2.1}$

We start by laying down the setups of Rademacher complexity.

Sample $S = \langle (x_1, y_1), ..., (x_m, y_m) \rangle$, $y_i \in \{-1, 1\}$. We are using $\{-1, 1\}$ here instead of $\{0, 1\}$, in order to make the math come out nicer.

hypothesis $h: X \to \{-1, 1\}$ Here, we're providing an alternative definition for training error.

$$\hat{err}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\{h(x_i) \neq y_i\}$$
(1)

$$e\hat{r}r(h) = \frac{1}{m}\sum_{i=1}^{m}\frac{1-y_ih(x_i)}{2} = \frac{1}{2} - \frac{1}{2m}\sum_{i=1}^{m}y_ih(x_i)$$
(2)

Equation (2) is reached because $y_ih(x_i)$ equals 1 when $y_i = h(x_i)$ and $y_ih(x_i)$ equals -1 when $y_i \neq h(x_i)$.

$$\frac{1}{m}\sum_{i=1}^{m} y_i h(x_i) = 1 - 2\hat{err}(h)$$
(3)

Training error is a reasonable measure of how well a single hypothesis fits the data set. From equation (3), we can see that in order to minimize the training error, we can simply maximize $\frac{1}{m}\sum_{i=1}^{m} y_i h(x_i)$.

2.2

Now, let us introduce a random label for data i, which we name σ_i and which is also known as a Rademacher random variable.

$$\sigma_i = \begin{cases} -1, & \text{with probability } 1/2. \\ +1, & \text{with probability } 1/2. \end{cases}$$
(4)

We can use this random label to form a complexity measure for \mathcal{H} that is independent of the real labels of \mathcal{S} .

$$E_{\sigma}[\max_{h\in\mathcal{H}}\frac{1}{m}\sum_{i}\sigma_{i}h(x_{i})]\tag{5}$$

Equation (5) intuitively measures the complexity of \mathcal{H} . Notice that we can find the range of this measure using two extreme cases.

- $\mathcal{H} = \{h_0\}$: because there is only one hypothesis, max is not used. We then arrive at the expectation of 0.
- S is shattened by \mathcal{H} : In this case, we can always find a hypothesis that matches all σ_i . Thus, the expected value is 1.

We now know that this measure ranges from 0 to 1.

2.3

We now replace \mathcal{H} with \mathcal{F} , a family of functions $f: \mathcal{Z} \to \mathcal{R}$. This generalizes our hypotheses to real-valued functions.

Sample $\mathcal{S} = \langle z_1, ..., z_m \rangle, z_i \in \mathcal{Z}.$

The definition for the empirical Rademacher complexity is

$$\hat{\mathcal{R}}_{\mathcal{S}}(\mathcal{F}) = E_{\sigma}[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} \sigma_i f(z_i)]$$
(6)

Notice we replaced max by sup (supremum) because max might not exist when taken over an infinite number of functions. Supremum takes the least upper bound. For example, $\sup\{.9,.99,.999,...\} = 1.$

In order to find a measure with respect to the distribution \mathcal{D} over \mathcal{Z} , we take the expected value of the *empirical Rademacher complexity* and arrive at the definition for the *expected Rademacher complexity*, i.e., *Rademacher complexity* — equation (7).

$$\mathcal{R}_m(\mathcal{F}) = E_s[\mathcal{R}_s(\mathcal{F})] \tag{7}$$

 $\mathcal{S} = \langle z_1, ..., z_m \rangle, \, z_i \sim \mathcal{D}$

3 Generalization Bounds Based on Rademacher Complexity

Theorem

Let \mathcal{F} be a family of functions $f : \mathcal{Z} \to [0, 1]$. Assume $\mathcal{S} = \langle z_1, ..., z_m \rangle$, i.i.d and $z_i \sim \mathcal{D}$. Define $\hat{E}_{\mathcal{S}}[f] = \frac{1}{m} \sum_i f(z_i)$, $\mathbf{E}[f] = E_{z \sim \mathcal{D}}[f(z)]$. $(\hat{E}_{\mathcal{S}}[f]$ is similar to the idea of the training error and $\mathbf{E}[f]$ is similar to the idea of the generalization error)

With probability at least $1 - \delta$, $\forall f \in \mathcal{F}$,

$$E[f] \le \hat{E}_{\mathcal{S}}[f] + 2\mathcal{R}_m(\mathcal{F}) + O\sqrt{\frac{\ln(\frac{1}{\delta})}{m}}$$
(8)

$$E[f] \le \hat{E_{\mathcal{S}}}[f] + 2\hat{\mathcal{R}_{\mathcal{S}}}(\mathcal{F}) + O\sqrt{\frac{\ln(\frac{1}{\delta})}{m}}$$
(9)

Proof

We want to bound the following random variable:

$$\Phi(\mathcal{S}) = \sup_{f \in \mathcal{F}} (E[f] - \hat{E}_{\mathcal{S}}[f])$$
(10)

Step 1

Using the definitions, we get:

$$\Phi(\mathcal{S}) = \sup_{f \in \mathcal{F}} (E[f] - \hat{E_{\mathcal{S}}}[f]) = \sup_{f \in \mathcal{F}} (E[f] - \frac{1}{m} \sum_{i} f(z_i))$$
(11)

Since $f(z_i) \in [0, 1]$, changing any z_i value to z'_i can only change $\frac{1}{m} \sum_i f(z_i)$ by at most $\frac{1}{m}$, and therefore $\Phi(\mathcal{S})$ by at most $\frac{1}{m}$. This means that $\Phi(\mathcal{S})$ satisfies the condition for McDiarmid's inequality, in that $|\Phi(z_1, ..., z_i, ..., z_m) - \Phi(z_1, ..., z'_i, ..., z_m)| \leq c_i$, where $c_i = \frac{1}{m}$.

McDiarmid's inequality states that with probability at least $1 - \delta Pr[f(x_1, ..., x_m) - E[f(X_1, ..., X_m)] \ge \epsilon] \le \exp(\frac{-2\epsilon^2}{\sum_{i=1}^m c_i^2})$

Applying McDiarmid's inequality, we get: With probability at least $1 - \delta$

$$\Phi(\mathcal{S}) \le E_{\mathcal{S}}[\Phi(\mathcal{S})] + \sqrt{\frac{\ln(\frac{1}{\delta})}{2m}}$$
(12)

Step 2

Let us define a ghost sample $\mathcal{S}' = \langle z'_1, ..., z'_m \rangle$, $z'_i \sim \mathcal{D}$. We aim to show that $E[\Phi(\mathcal{S})] \leq E_{\mathcal{S},\mathcal{S}'}[\sup_{f \in \mathcal{F}} (\hat{E_{\mathcal{S}'}}[f] - \hat{E_{\mathcal{S}}}[f])].$

$$E_{\mathcal{S}'}[\hat{E_{\mathcal{S}'}}[f]] = E[f] \tag{13}$$

Equation (13) is true because the expected value of the random variable $\hat{E}_{\mathcal{S}'}[f]$ over all samples \mathcal{S}' is E[f].

$$E_{\mathcal{S}'}[\hat{E}_{\mathcal{S}}[f]] = \hat{E}_{\mathcal{S}}[f] \tag{14}$$

Equation (14) is true because the random variable $\hat{E}_{\mathcal{S}}[f]$ is independent of \mathcal{S}' .

Therefore,

$$E[\Phi(\mathcal{S})] = E_{\mathcal{S}}[\sup_{f \in \mathcal{F}} (E[f] - \hat{E}_{\mathcal{S}}[f])]$$

$$= E_{\mathcal{S}}[\sup_{f \in \mathcal{F}} (E_{\mathcal{S}'}[\hat{E}_{\mathcal{S}'}[f] - \hat{E}_{\mathcal{S}}[f]])]$$

$$\leq E_{\mathcal{S},\mathcal{S}'}[\sup_{f \in \mathcal{F}} (\hat{E}_{\mathcal{S}'}[f] - \hat{E}_{\mathcal{S}}[f])]$$

The last inequality is true because the expected value of the max of some function is at least the max of the expected value of the function.

Step 3

Continuing the ghost sampling technique, we now try to obtain two new samples \mathcal{T} and \mathcal{T}' by running through the following mechanism on \mathcal{S} and \mathcal{S}' .

for i = 1, ..., mwith probability 1/2: swap z_i, z'_i else: leave alone

 $\mathcal{T}, \mathcal{T}' = \text{resulting samples}$

$$\hat{E_{\mathcal{T}'}}[f] - \hat{E_{\mathcal{T}}}[f] = \frac{1}{m} \sum_{i} \begin{cases} (f(z_i) - f(z'_i)), & \text{with probability } 1/2\\ (f(z'_i) - f(z_i)), & \text{with probability } 1/2. \end{cases}$$
(15)

 \implies

$$\hat{E_{T'}}[f] - \hat{E_{T}}[f] = \frac{1}{m} \sum_{i} \sigma_i (f(z'_i) - f(z_i))$$
(16)

We know that $\mathcal{T}, \mathcal{T}' \sim \mathcal{S}, \mathcal{S}'$ (equally distributed) because $\mathcal{S}, \mathcal{S}'$ are i.i.d samples from the distribution \mathcal{D} .

Therefore, $\sup_{f \in \mathcal{F}} (\hat{E}_{\mathcal{S}'}[f] - \hat{E}_{\mathcal{S}}[f]) \sim \sup_{f \in \mathcal{F}} (\frac{1}{m} \sum_{i} \sigma_i (f(z'_i) - f(z_i))).$ Then, if we take the expected values of the two expressions over $\mathcal{S}, \mathcal{S}'$ and σ_i , the values

should equal to each other.

Equation (17) shows the conclusion for step 3.

$$E_{\mathcal{S},\mathcal{S}'}[\sup_{f\in\mathcal{F}}(\hat{E_{\mathcal{S}'}}[f] - \hat{E_{\mathcal{S}}}[f])] = E_{\mathcal{S},\mathcal{S}',\sigma}[\sup_{f\in\mathcal{F}}(\frac{1}{m}\sum_{i}\sigma_{i}(f(z_{i}') - f(z_{i})))]$$
(17)