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1 VC Dimension

Last time we proved the theorem that with high probability 1− δ, the generalization error
is given by

err(h) ≤ O
(

ln ΠH(2m) + ln 1/δ
m

)
(1)

where ΠH(m) is the growth function. We also defined the concept of shattering where
S is shattered by H if |ΠH(S)| = 2|S|. Finally, we defined VC-dimension, or Vapnik-
Chervonenkis dimension, as the cardinality of the largest shattered set. In this lecture, we
are going to derive the bounds of the growth function, which is either O(md) or 2m.

1.1 Examples of VC-dimension

Here are some general results:

• VC-dim(intervals) = 2

• VC-dim(Axis-aligned rectangles) = 4

• VC-dim(Hyper-rectangles in Rn) = 2n

• VC-dim(LTF in Rn) = n+ 1

Note that LTF means linear threshold function (or perceptron), which is defined as a
half space with parameters w where every points in this space is defined as “+”. Formally,

cw(x) =
{

1 if w · x ≥ b
0 if w · x < b

(2)

The dot sign means inner product. If b is forced to be 0, the VC-dimension reduces to
n. It is often the case that the VC-dimension is equal to the number of free parameters of a
concept (for example, a rectangle’s parameters are its topmost, bottommost, leftmost and
rightmost bounds, and its VC-dimension is 4). However, it is not always true; there exists
concepts with 1 parameter but an infinite VC-dimension.

There is also an inequality relationship between VC-dimension and the cardinality of
H. If the VC-dimension is d, then there exists a shattered set of size d on which H realizes
all possible labelings. Because for every labeling there must be a corresponding hypothesis,
we have |H| ≥ 2d, which gives us:

VC-dim(H) ≤ lg |H| (3)



1.2 Determining VC-dimension

In the last section, we claimed VC-dim(Axis-aligned rectangles) = 4. Now we show how
to prove it. The proof involves two steps: first, we show the VC-dimension is at least 4
by showing that there exists a 4-point set shattered by the concept set (it’s worth noting
that not every 4-point configuration can be shattered, but we only need one to make the
statement). Then, we show that there is no 5-point set that can be shattered.

Proof (1) An example 4-point set is shown in Figure 1 with all typical labelings and the
corresponding realization. So we have VC-dim≥ 4.

(2) For any 5-point set, we can construct a data assignment in this way: pick the
topmost, bottommost, leftmost and rightmost points and give them the label “+”. Because
there are 5 points, there must be at least one point left to which we assign “−”. Any
rectangle that contains all the “+” points must contains the “−” point, which is a case
where shattering is not possible. This proves that VC-dim< 5.

In sum, VC-dim(axis aligned rectangle)= 4.

Figure 1: Proving that rectangle concept space shatters at least 4 points

2 Sauer’s Lemma

Sauer’s Lemma provides an upper bound for ΠH(m) parameterized by d, the VC-dimension
of H. It also leads to the proof that the growth function is either O(md) or 2m. In this
section, we are going to use these definition and facts in binomial coefficients:(

m

k

)
= 0 if k < 0 or k > m (4)

(
m

k

)
=
(
m− 1
k − 1

)
+
(
m− 1
k

)
(5)

(a+ b)m =
m∑

k=0

(
m

k

)
akbm−k (6)

Lemma 2.1 (Sauer’s Lemma) Let H be a hypothesis set with VC-dim(H) = d. Then, for
all m ∈ N , the following inequality holds
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ΠH(m) ≤ Φd(m) ≡
d∑

i=0

(
m

i

)
(7)

Proof The proof is by induction on m+ d. The base cases are as follows:

• When d = 0, for any m points, there is only a single label possible for every point in
the space. So in this case ΠH(m) = 1 =

(
m
0

)
= Φ0(m).

• When m = 0, for any d, there is only one labeling. So ΠH(0) = 1 =
∑d

i=0

(
0
i

)
= Φd(0)

When m ≥ 1 and d ≥ 1, assume the lemma holds for any m′ and d′ if m′ + d′ < m+ d.
Suppose S = {x1, ..., xm}; we now prove ΠH(S) ≤ Φd(m). We start by creating two other
hypothesis spaces: first, we construct H1 by restricting the set of concepts in H to the
set S′ = {x1, ..., xm−1}. Figure 2 shows an example of the construction: suppose there
is a concept in H maps (x1, x2, x3, x4, x5) to (0, 1, 1, 0, 1), by restricting this concept on
the domain (x1, x2, x3, x4), we create a new concept in H1 that maps (x1, x2, x3, x4) to
(0, 1, 1, 0).

In this construction, some pairs of concepts may collapse into single concepts in H1.
The second hypothesis space H2 is obtained by including all these collapsed concepts in
constructing H1. As illustrated in Figure 2, when concept (0, 1, 1, 0, 1) and (0, 1, 1, 0, 0)
both collapse into a concept (0, 1, 1, 0) in H1, we add another copy of (0, 1, 1, 0) to H2. Note
that both H1 and H2 are both defined on the domain (x1, ..., xm−1).

We now derive bounds on the size of these two new hypothesis spaces.

• Any subset T ⊆ S shattered by H1 is also shattered by H. So VC-dim(H1) ≤ VC-dim
(H) = d. By inductive hypothesis, |H| = |ΠH1(S′)| ≤ Φd(m− 1)

• Also notice that VC-dim(H2) ≤ d− 1 since for any T ⊆ S′ shattered by H2, T ∪{xm}
is shattered by H1. So |H2| = |ΠH2(S′)| ≤ Φd−1(m− 1)

Figure 2: Constructing H1 and H2 from H: each table represents the content of hypoth-
esis space; each row corresponds to a hypothesis and each row corresponds to a point xi.
The values are the labeling of a point given the row hypothesis. The arrow shows which
hypothesis in H is used to construct a new hypothesis in H1 and H2.
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In summary,

|ΠH(S)| = |H1|+ |H2| ≤ Φd(m− 1) + Φd−1(m− 1)

=
d∑

i=0

(
m− 1
i

)
+

d−1∑
i=0

(
m− 1
i

)

=
d∑

i=0

[(
m− 1
i

)
+
(
m− 1
i− 1

)]
(Equation 4)

=
d∑

i=0

(
m

i

)
(Equation 5)

which completes the proof. �

Now we show an upper bound of Φd(m): if m ≥ d ≥ 1, then

Φd(m) ≤ (
em

d
)d = O(md)

Proof According to the definition, Φd(m) =
∑d

i=0

(
m
i

)
. We multiply ( d

m)d on both sides
and thus,(

d

m

)d

Φd(m) ≤
d∑

i=0

(
m

i

)(
d

m

)d

≤
d∑

i=0

(
m

i

)(
d

m

)i

(d/m ≤ 1)

=
d∑

i=0

(
m

i

)(
d

m

)i

1m−i

≤
m∑

i=0

(
m

i

)(
d

m

)i

1m−i (d ≤ m)

=
(

1 +
d

m

)m

≤ ed (Binomial theorem, Equation 6)

It follows that Φd(m) ≤ ( em
d )d. �

Corollary 2.2 Let H be a hypothesis space with VC-dim(H) = d. Then for all m ≥ d ≥ 1

ΠH(m) ≤ (
em

d
)d = O(md)

The proof directly follows from Sauer’s lemma where ΠH(m) ≤ Φd(m) and the fact
we just proved. With this corollary, we can show that the growth function only exhibits
two types of behavior: either VC-dim(H) = d < ∞, in which case ΠH(m) = O(md), or
VC-dim(H) =∞, in which case ΠH(m) = 2m for all m ≥ 1

Finally, we are able to express the generalization bound using VC-dimension:
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Theorem 2.3 Let H be a hypothesis space with V C-dim(H) = d. With probability at
least 1 − δ, for all h ∈ H, if h is consistent with all m examples (m ≥ d ≥ 1) sampled
independently from a distribution D, then the generalization error is

errD(h) ≤ 2
m

(
d lg

2em
d

+ lg
1
δ

+ 1
)

It directly follows from Corollary 2.2 and our earlier bound.

3 The lower bound?

VC-dimension also provides necessary conditions for learnability. In this sense, it is also
possible to prove lower bounds on the number of examples needed to learn in the PAC
model to a given accuracy. The difference is that instead of looking at the hypothesis space
H, we evaluate the VC dimension over the concept class C.

Let’s suppose we are working with concept class C and VC-dim(C) = d, which means
there exists a set of size d, {z1, ..., zd}, shattered by concept class C. A natural lower bound
is d. The intuition is that even if we are given z1, ..., zd−1, we still lack the information
conveyed by the last point; both labelings of the last point are still possible. To prove it
rigorously, we need to go back to the definition of PAC learnable.

Claim 3.1 For any algorithm A that PAC-learns the concept class C, if given d/2 exam-
ples,then err(hA) has large generalization error with high probability.

An incorrect proof is given below:

In the PAC learning setting, there is a target distribution D. To make things as bad
as possible, we can choose whatever distribution we want. So we define D as a uniform
distribution over the shattered set z1, ..., zd. Then we run some candidate algorithm A on
d/2 samples chosen randomly from D. This algorithm will output hypothesis hA. Pick
c ∈ C which is consistent with the labels on the training set S. Let the remaining samples
be labelled incorrectly, that is choose c(x) so that c(x) 6= hA(x) for all x 6∈ S. Then err(hA)
is 1/2 since hA misclassifies at least half the points in the shattered set.

This is wrong because the proof cheats by choosing the concept c after the training
samples are selected (we can do that for h but not for c). We will show a correct proof next
time.
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