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Recap

Last lecture, we proved Occam’s Razor, which is that with probability at least 1−δ, ∀h ∈ H,
if h is consistent with all m examples that are sampled independently from distribution D,

then the generalization error errD(h) ≤ ln|H|+ln 1
δ

m . However, this equation only applies to
finite hypothesis spaces since we are using the cardinality of H. This led us to briefly discuss
about the generalization of Occam’s Razor to infinite hypothesis spaces at the end of last
week’s lecture.

Sample Complexity for Infinite Hypothesis Space

In order to generalize Occam’s Razor to infinite hypothesis spaces, we have to somewhat
replace the |H|. Here we first introduce some new concepts and notations which would
simplify the later proof and discussion.

S = 〈x1, · · · , xm〉 (sample set)

ΠH(S) = {〈h(x1), · · · , h(xm)〉 : h ∈ H} (set of all possible dichotomies of H on S)

ΠH(m) = max
S:|S|=m

|ΠH(S)| (growth function)

The growth function denotes the maximum number of distinct ways in which m points can
be classified using hypotheses in H, which provides another measure of the complexity of
the hypothesis set H. We will prove later that ∀H either:

•ΠH(m) = 2m (impossible for PAC, can’t get enough data)

or

•ΠH(m) = O(md) (possible for PAC)

Recall that our goal is to replace the cardinality of |H| in Occam’s Razor. It is now clear
that a growth function with a form similar to ΠH(m) is a good candidate. Therefore, our
goal is to modify Occam’s Razor to the following generalized version:

Theorem:
with probability at least 1−δ, ∀h ∈ H, if h is consistent with all m examples that are sampled

independently from distribution D, then the generalization error errD(h) ≤ O(
ln ΠH(2m)+ln 1

δ
m ).

Before the proof, we first introduce some definitions. Let D denote our target distribu-
tion, and S = 〈x1, · · · , xm〉 denote a sample of m > 8/ε points chosen independently from
D. We also introduce a “ghost sample” S′〈x′1, · · · , x′m〉 that consists of m points drawn i.i.d.



from D. By creating this “ghost sample”, we are using the “double-sample trick” to take
the mistakes on S′ as a proxy for a hypothesis’s generalization error. More importantly,
doing so helps us avoid dealing with the potentially infinite space of instances, yet being
able to make claims about a hypothesis. S′ is called the “ghost sample” because it never
actually exists and is not provided to the learning algorithm. We also define:

• M(h, S) = number mistakes h makes on S

• B ≡ [∃h ∈ H : (h is consistent on S) ∧ (errD(h) > ε)]

• B′ ≡ [∃h ∈ H : (h is consistent on S) ∧ (M(h, S′) ≥ mε

2
)]

Proof

Our goal is to prove that Pr[B] ≤ δ

Step 1: Pr[B′|B] ≥ 1/2

In order to show this, suppose B holds, which is that there exists h consistent on S and
errD(h) > ε. Since errD(h) > ε, the expectation value of M(h, S′), which is simply the
number of examples times the probability of making an error would be at least mε. By
Chernoff bounds (to be discussed later in the course) we can show that Pr[M(h, S′) <
mε
2 ] ≤ 1

2 . Therefore, we can conclude that Pr[B′|B] ≥ 1/2.

Step 2: Pr[B] ≤ 2Pr[B′]

From A ∧B ⇒ A, we can show that:

Pr[B′] ≥ Pr[B ∧B′]
= Pr[B]Pr[B′|B] (by product rule)

≥ 1

2
Pr[B] (by step 1)

Now we have reduced the original problem to finding an upper bound for Pr[B′].

Now, consisder two experiments to generate S and S′

Experiment 1: Choose S, S′ as usual (i.i.d. from D)
Experiment 2: First choose S, S′ as usual (i.i.d. from D), but for i ∈ {1, 2, · · · ,m} swap
the example xi in S with x′i in S′ with 0.5 probability and call the resulting samples as T
and T ′.

Notice that T , T ′ have the exact same distribution as S, S′ since they are drawn from
i.i.d., so experiment 1 and experiment 2 are actually identical. Also, we define:

• B′′ ≡ [∃h ∈ H : (h is consistent on T ) ∧ (M(h, T ′) ≥ mε

2
)]

≡ [∃h ∈ H : (M(h, T ) = 0) ∧ (M(h, T ′) ≥ mε

2
)]
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Step 3: Pr[B′′] = Pr[B′]

Becuase the distributions for T , T ′ are exactly the same as those for S, S′, Pr[B′′] = Pr[B′].

Define b(h) ≡ [h is consistent with T and M(h, T ′) ≥ mε
2 ]

Step 4: Pr[b(h)|S, S ′] ≤ 2−mε/2

Let us identify each example x in S and S′ with a bit which is 0 if h(x) = c(x) and 1 if
h(x) 6= c(x). In this step, we want to bound the probability of constructing a set T that is
consist of only example 0’s and T ′ that is consist of only example 1’s given S and S′ that
is selected from the standard procedure (drawing i.i.d. from D). We denote this as b(h):

b(h) ≡ (M(h, T ) = 0) ∧ (M(h, T ′) ≥ mε

2
)

Let r denote the number of pairs of points from S and S′ that has exactly one 1 labeled.
Pr[b(h)|S, S′] ≤ 2−mε/2 can then be shown by the following three cases:

Case 1: ∃xi, x′i with both of them labeled as 1

In this case, no matter how the examples in S and S′ are swapped by experiment 2, there
will always be an error in T . Therefore, Pr[M(h, T ) = 0] = 0⇒ Pr[b(h)|S, S′] = 0

S | 1 1 0 0 1

S′ | 0 1 0 1 0

We can see from the above example that, no matter how the example in S are swapped
with the example in S′ below it, the minimum number of 1 labeled in S will be 1 since there
are two 1’s in colum 2.

S | 0 1 0 0 0

S′ | 1 1 0 1 1

Case 2: r < mε
2

In this case Pr[b(h)|S, S′] is also 0. This is because in order for b(h) to be true, all r errors
have to occur in T ′ and the total number of errors labeled in T ′ have to exceed mε

2 , which
is impossible since there is only one error in each pair in r and r < mε

2 .

Case 3: r ≥ mε
2

Now, the total number of errors exceeds mε
2 so there is a probability that b(h) is true. As

mentioned above, experiment 2 would swap examples in S and S′ with probability 0.5.
Since these events are independent, Pr[b(h)|S, S′] = (1

2)r ≤ 2−mε/2.

Now, we can derive the bound of Pr[b(h)|S, S′] as follows:

Pr[b(h)|S, S′] ≤ 2−mε/2
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Step 5: Pr[B′′|S, S ′] ≤ ΠH(2m)2−mε/2

Let H′ denote the space of “representative” hypotheses for each labeling of S, S′, which is
finite. We can see that |H′| = |ΠH(S, S′)| ≤ ΠH(2m).

We can now prove Pr[B′′|S, S′] ≤ ΠH(2m)2
−mε
2 as follows:

Pr[B′′|S, S′] = Pr[∃h ∈ H : b(h)|S, S′]
= Pr[∃h ∈ H′ : b(h)|S, S′]

≤
∑
h∈H′

Pr[b(h)|S, S′] (by union bound)

≤ |H′|2−mε/2 (from step4)

≤ ΠH(2m)2−mε/2

Notice that the second step above is true because if b(h) holds for some h ∈ H, it will also
hold for some h ∈ H′ since they behave the same on S and S′ (b(h) only depends on S and
S′).

Step 6: Pr[B′′] ≤ ΠH(2m)2−mε/2

By marginalization (Pr[a] = EX [Pr[a|X]]) we can show that:

Pr[B′′] = ES,S′ [Pr[B′′|S, S′]]
≤ ΠH(2m)2−mε/2 (by marginalization)

By the above six steps, we can finally show that:

Pr[B′′] ≤ 2Pr[B′] = 2Pr[B′′]

≤ 2ΠH(2m)2−mε/2

≤ δ

Now, by solving the above inequality for ε, we can see that the inequality above holds when

ε ≤ 2
m(lg ΠH(2m) + lg 1

δ + 1) = O(
ln ΠH(2m)+ln 1

δ
m ), which is the error bound we are trying

to prove for the generalized Occam’s Razor.

By replacing |H| with the growth function ΠH(2m), we have now proved a bound on
generalization in terms of the growth function. When the growth function has the form
of O(md), we have a useful bound. We will later see when this form of growth function
happens.
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VC-Dimension

At the end of the class, we also briefly discussed the VC-dimension (Vapnik-Chervonenkis
dimension). In order to define the VC-dimension of a hypothesis set H, we first need to
introduce the concept of “shattering”. A set S of size m is shattered by H if all labelings
of S can be realized by hypotheses in H, that is when |ΠH(S)| = ΠH(m) = 2m. And the
VC-dimension of a hypothesis set H is the cardinality of the largest set that can be fully
shattered by H:

V Cdim(H) = max{m : ΠH(m) = 2m}

We now look at an example of H = {intervals} :

Figure 1: H contains hypotheses that produce evey possible labeling of the 1 point in S.
Therefore, H shatters S, VCdim ≥ 1

Figure 2: H contains hypotheses that produce evey possible labeling of the 2 points in S.
Therefore, H shatters S, VCdim ≥ 2
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Figure 3: When S is a set of 3 points, H does not contain a hypothesis that can label this
situation. Therefore, H does not shatter S, VCdim < 3

We can see from the example that H shatters S when S contains a single point and two
points, but not three. Therefore, VCdim(H) = 2
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