
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #4
Scribe: Akshay Mittal February 13, 2013

1 Proof of learning bounds

For intuition of the following theorem, suppose there exists a hypothesis h which is ε-bad
and makes at least one mistake with a few 100 examples. Therefore, since h is ε-bad, then
with high probability, it is going to be eliminated and will not be picked up by the algorithm.
By the union bound, we will then show that all of the ε-bad hypotheses are inconsistent
with that training set.

Theorem. Say algorithm A always finds hypothesis hA ∈ H consistent with m examples
where

m ≥ 1
ε

(
ln |H|+ ln

1
δ

)
then

Pr[errD(hA) > ε] ≤ δ

The underlying assumption is that the hypothesis space is finite, i.e. |H| <∞ and that the
m examples are i.i.d. with respect to the distribution D. The theorem provides a upper
bound on the amount of training data m needed to achieve a low error ε with a confidence
of at least 1− δ.

Proof. We aim to bound the probability that hA is both consistent and ε-bad, i.e. the
generalization error of hA is greater than ε. Let B = {h ∈ H : h ε-bad} be the set of all
ε-bad hypotheses in H. (Here B is a fixed set and not a random variable. The concept c
and distribution D are fixed, thus, the hypotheses h having error on D are fixed. The only
random variable is hA which depends on the sample. The consistency of hA is also random.)

Pr[hA is consistent and ε-bad]

≤ Pr[∃h ∈ H : h cons. & ε-bad] (∵ if A⇒ B, then Pr[A] ≤ Pr[B])

= Pr[∃h ∈ B : h cons.]

= Pr

∨
h∈B

(h cons.)

≤
∑
h∈B

Pr[h cons.] (by union bound)

=
∑
h∈B

Pr[h(x1) = c(x1) ∧ . . . ∧ h(xm) = c(xm)] (by defn. of consistency)

=
∑
h∈B

m∏
i=1

Pr[h(xi) = c(xi)] (by independence)

≤
∑
h∈B

(1− ε)m (∵ h ∈ B ⇒ Pr[h(xi) 6= c(xi)] ≥ ε)

= |B|(1− ε)m

≤ |H|(1− ε)m (∵ B ⊆ H)

≤ |H|e−εm (∵ ∀x, (1 + x) ≤ ex)

≤ δ (follows by choice of m)

The negation of Pr[∃h ∈ H : h cons. & ε-bad] leads us to conclude that with probability
≥ (1− δ) and ∀h ∈ H, if h is consistent, then

errD(h) ≤ ε =
ln |H|+ ln 1

δ

m
(1)

Equation 1 captures the bound on the generalization error in terms of the learning perfor-
mance δ, the size of the hypothesis space |H| and the number of training sample m.

An Alternate Proof

We can attempt to get rid of the dependence of the generalization error on the number of
hypotheses |H| as follows

Pr[errD(hA) > ε | hA cons.]

=
Pr[hA cons. | err(hA) > ε] Pr[err(hA) > ε]

Pr[hA cons.]
(by Bayes rule)

= Pr[hA cons. | err(hA) > ε] Pr[err(hA) > ε] (∵ Pr[hA cons.] = 1)

≤ Pr[hA cons. | err(hA) > ε] (∵ Pr[err(hA) > ε] ≤ 1)

= Pr[hA(x1) = c(x1) ∧ . . . ∧ hA(xm) = c(xm) | err(hA) > ε] (by defn. of consistency)

=

m∏
i=1

Pr[hA(xi) = c(xi) | err(hA) > ε] (by conditional independence)

≤ (1− ε)m (∵ Pr[h(xi) 6= c(xi)] ≥ ε)
≤ e−εm (∵ ∀x, (1 + x) ≤ ex)

≤ δ (if m ≥ ln 1
δ
ε)

The argument above seems plausible, but it is actually incorrect. In the first proof, h is
not a random variable, since we had picked it before the sample S was picked, hence use
of independence is valid in that case. However in this alternate proof, the hypothesis hA
is generated from the sample S, and therefore is a random variable that depends on the
sample S. Since hA depends on the sample S, given hA is ε-bad, the samples from S are
no longer i.i.d. Thus, use of conditional independence in the above proof is incorrect, i.e.

Pr[hA cons. | err(hA) > ε] 6=
m∏
i=1

Pr[hA(xi) = c(xi) | err(hA) > ε]

2

Moreover, Pr[hA cons. | err(hA) > ε] should be 1, because we assume that hA is always con-
sistent. Therefore, care must be taken to pick the hypothesis (for which the generalization
error is being analysed) before the sample space S is selected.

2 Consistency via PAC

In the previous section, we have seen that if we can learn in the consistency model, then
we can learn in the PAC-model, provided |H| is not too huge. A concept class C is said to
be properly PAC learnable by H if the hypotheses space H is the same as the concept class
C. We will now take the situation considering the case vice-versa.

Proposition. Given

• algorithm A that properly PAC-learns C, i.e. given a set of random examples, A finds
a hypothesis h ∈ C, such that with high probability, the hypothesis has generalization
error at most ε.

• a sample S = 〈(x1, y1), . . . , (xm, ym)〉

we can use A as a subroutine to find c ∈ C consistent with S (if one exists).

Intuitively, since a PAC learning algorithm must have examples from a random distribution
and S is not a random set, we construct a distribution for it and sample the examples (for
feeding to algorithm A) from it. We then use algorithm A to get a hypothesis h such that
errD(h) ≤ ε and use it to show that h is consistent.

Proof. Given m examples S, we construct a distribution D that is uniform over the m
examples in S. We choose ε = 1

2m and any desired value of δ > 0. We then run algorithm
A on m′ = poly(1

ε ,
1
δ) examples chosen from the distribution D. Here m′ is the number of

examples required by A to attain the desired accuracy (1− ε) with high probability 1− δ.
If A outputs the algorithm h, we check whether h is consistent with S. If h is consistent
with S, then we output the hypothesis h (thus proving the proposition), else (or if A failed
to generate a hypothesis), then we say “nothing consistent”. Mathematically, if there exists
c ∈ C consistent with S, then with probability at least (1 − δ) (since A is PAC-learning
algorithm), we have

errD(h) ≤ ε

=
1

2m

<
1
m

(2)

Since D is uniform, the probability assigned to each example is 1
m and therefore the gen-

eralization error is an integer multiple of 1
m . By Equation 2, this leads to the conclusion

that errD(h) = 0 and h is consistent. If, however, there does not exist a c ∈ C which is
consistent, then algorithm A would fail somehow i.e. either give a hypothesis h which is
inconsistent or terminate by saying that “nothing consistent”.

Consistency and PAC-learnability are closely related concepts.

3

3 Learnability of Infinite Hypothesis Space

The result shown above holds only for the finite hypothesis spaces. There are still various
examples, such as positive half-lines, rectangles, etc. that allow us to learn even though they
have infinite hypothesis spaces. We will now discuss the characteristics of these hypothesis
spaces to determine what makes a concept class C PAC-learnable.

Example 3.1. Positive Half-lines

Given any unlabeled dataset of points on the x-axis, h1 and h2 behave exactly the same
on the dataset. Although there are infinitely many hypotheses possible for this example,
using the similarity of multiple hypotheses, we can divide the hypothesis into finite distinct
equivalence classes. For instance, below are the 5 possible labelings/dichotomies/behaviors
for a set of 4 unlabeled examples.

Therefore, in general, for m unlabeled examples we have (m + 1) possible equivalence
classes compared to the 2m possible labelings (there are infinitely many hypotheses but
only finitely many labelings) for the unlabeled dataset [m + 1 � 2m]. The fact that the
number of equivalence classes/labellings/dichotomies is so small, makes this concept class
of positive half-lines PAC-learnable. Even though the hypothesis space is infinitely large,
the effective hypothesis space is small O(m).

Example 3.2. Positive/Negative Half-lines

This case is similar to Example 3.1 except that the half-line can label the examples positive
or negative on either side of the marker point. To compute the effective hypothesis space,
we double the result of Example 3.1 and subtract 2 (to account for the double counting of all
positive labels and all negative labels). Thus, the effective hypothesis space = 2(m+1)−2 =
2m ≡ O(m).

Example 3.3. Intervals
The concept class C consists of concepts which classify points, on the real axis, inside an
interval (specific to every concept) as positive and those outside the interval as negative.

4

With m points, there are (m+ 1) ways to place a marker for an interval boundary, thus the
number of ways to select an interval, of this format, is

(
m+1

2

)
. To account for the empty

interval (which can be placed between any two points), one extra value needs to be added,
thus totaling the effective hypothesis cardinality to be

(
m+1

2

)
+ 1 ≡ O(m2). Alternatively,

one could first pick pair of points
(
m
2

)
, then singleton points m and lastly the empty case

1, once again totaling to
(
m
2

)
+m+ 1 which computes to be the same result.

Generalizing the characteristics of the aforementioned examples, we have a hypothesis space
H and a set of unlabeled examples S = 〈x1, x2, . . . , xm〉. We can thus define the set of all
possible behaviors/dichotomies/labelings of H on S as

ΠH(S) = {〈h(x1), . . . , h(xm)〉 : h ∈ H}

Thus, for Example 3.1 we get |ΠH(S)| = 5. We can now define a growth function over m
samples to capture how complex the hypothesis space grows as we see more samples

ΠH(m) = max
|S|=m

|ΠH(S)|

Intuitively, we would like to use ΠH(S) as an effective hypothesis space and thus replace
ln |H| in the error bound with ln |ΠH(m)|. The error bound depends on the growth function,
which means that if the growth function grows as 2m, i.e. ∀m, ΠH(m) = 2m, then we reduce

the bound as m ≥ m+ln 1
δ

ε , which is not useful. In this case, learning is impossible because
we are working with something like all possible functions. However, we will see that the
only other possible case for all hypothesis spaces is that the growth function grows as a
polynomial in m, i.e. ΠH(m) = O(md). Here d is called the VC-dimension and the error
bound does not blow up

lim
m→∞

d lnm+ ln 1
δ

m
−→ 0

Thus we observe that for any H, either ΠH(m) = 2m for all m, or ΠH(m) = O(md) for
some constant d.

5

