
HTTP
Reading: Section 9.1.2 and 9.4.3

COS 461: Computer Networks
Spring 2013

1

Recap: Client-Server Communication
• Client “sometimes on”
– Initiates a request to the

server when interested
– E.g., Web browser on your

laptop or cell phone
– Doesn’t communicate

directly with other clients
– Needs to know server’s

address

• Server is “always on”
– Handles services requests

from many client hosts
– E.g., Web server for the

www.cnn.com Web site
– Doesn’t initiate contact

with the clients
– Needs fixed, known address

2

http://www.cnn.com/

Outline
• HTTP overview

• Proxies

3

Two Forms of Header Formats
• Fixed: Every field (type, length) defined
– Fast parsing (good for hardware implementations)
– Not human readable
– Fairly static (IPv6 ~20 years to deploy)
– E.g., Ethernet, IP, TCP headers

• Variable length headers
– Slower parsing (hard to implement in hardware)
– Human readable
– Extensible
– E.g., HTTP (Web), SMTP (Email), XML

4

HTTP Basics (Overview)
• HTTP over bidirectional byte stream (e.g. TCP)

• Interaction
– Client looks up host (DNS)
– Client sends request to server
– Server responds with data or error
– Requests/responses are encoded in text

• Stateless
– HTTP maintains no info about past client requests
– HTTP “Cookies” allow server to identify client and

associate requests into a client session
5

HTTP Request

6

“cr” is \r “lf” is \n
sp is “ “

HTTP Request

• Request line
–Method
• GET – return URI
• HEAD – return headers only of GET response
• POST – send data to the server (forms, etc.)

– URL (relative)
• E.g., /index.html

– HTTP version

7

HTTP Request (cont.)
• Request headers
– Variable length, human-readable
– Uses:
• Authorization – authentication info
• Acceptable document types/encodings
• From – user email
• If-Modified-Since
• Referrer – what caused this page to be requested
• User-Agent – client software

• Blank-line
• Body

8

HTTP Response

11

HTTP Response
• Status-line
– HTTP version (now “1.1”)
– 3 digit response code
• 1XX – informational
• 2XX – success

– 200 OK
• 3XX – redirection

– 301 Moved Permanently
– 303 Moved Temporarily
– 304 Not Modified

• 4XX – client error
– 404 Not Found

• 5XX – server error
– 505 HTTP Version Not Supported

– Reason phrase 12

HTTP Response (cont.)
• Headers
– Variable length, human-readable
– Uses:

• Location – for redirection
• Server – server software
• WWW-Authenticate – request for authentication
• Allow – list of methods supported (get, head, etc)
• Content-Encoding – E.g x-gzip
• Content-Length
• Content-Type
• Expires (caching)
• Last-Modified (caching)

• Blank-line
• Body

13

HTTP Response Example
HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1

OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24
Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
Accept-Ranges: bytes
Content-Length: 4333
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html
…..

14

How to Mark End of Message?
• Close connection
– Only server can do this
– One request per TCP connection. Hurts performance.

• Content-Length
– Must know size of transfer in advance

• No body content. Double CRLF marks end
– E.g., 304 never have body content

• Transfer-Encoding: chunked (HTTP/1.1)
– After headers, each chunk is content length in hex,

CRLF, then body. Final chunk is length 0.

15

Example: Chunked Encoding
HTTP/1.1 200 OK <CRLF>

Transfer-Encoding: chunked <CRLF>

<CRLF>

25 <CRLF>

This is the data in the first chunk <CRLF>

1A <CRLF>

and this is the second one <CRLF>

0 <CRLF>

• Especially useful for dynamically-generated content, as
length is not a priori known
– Server would otherwise need to cache data until done

generating, and then go back and fill-in length header before
transmitting 16

Outline
• HTTP overview

• Proxies

17

Proxies

• End host that acts a broker between client and
server
– Speaks to server on client’s behalf

• Why?
– Privacy
– Content filtering
– Can use caching (coming up)

18

Proxies (Cont.)

• Accept requests
from multiple
clients

• Takes request
and reissues it
to server

• Takes response
and forwards to
client

19

client

Proxy
server

client

HTTP request

HTTP re
quest

HTTP response

HTTP re
sponse

HTTP request

HTTP response

origin
server

origin
server

Assignment 1: Requirements

• Non-caching, HTTP 1.0 proxy
– Support only GET requests
– No persistent connections: 1 HTTP request per

TCP connection

• Multi-process: use fork()

• Simple binary that takes a port number
– ./proxy 12345 (proxy listens on port 12345)

• Work in Firefox & Chrome
– Use settings to point browser to your proxy

20

Assignment 1: Requirements
• What you need from a client

request: host, port, and URI path
– GET http://www.princeton.edu:80/ HTTP/1.0

• What you send to a remote server:
– GET / HTTP/1.0
Host: www.princeton.edu:80
Connection: close

• Check request line and header format

• Forward the response to the client
21

Why Absolute vs. Relative URLs?
• First there was one domain per server
– GET /index.html

• Then proxies introduced
– Need to specify which server
– GET http://www.cs.princeton.edu/index.hml

• Then virtual hosting: multiple domains per server
– GET /index.html
– Host: www.cs.princeton.edu

• Absolute URL still exists for historical reasons and
backward compatibility

22

Assignment 1: Requirements

• Non-GET request?
– return “Not Implemented” (code 501)

• Unparseable request?
– return “Bad Request” (code 400)

• Use provided parsing library

23

Advice

• Networking is hard
– Hard to know what’s going on in network layers
– Start out simple, test often

• Build in steps
– Incrementally add pieces
–Make sure they work
–Will help reduce the effect of “incomplete”

information

• Assume teaching staff is non malicious or
trying to trick you

24

Assignment 1 – Getting Started

• Modify Assn 0 to have server respond
– Simple echo of what client sent

• Modify Assn 0 to handle concurrent clients
– Use fork()

• Create “proxy” server
– Simply “repeats” client msg to a server, and

“repeats” server msg back

• Client sends HTTP requests, proxy parses

25

Summary
• HTTP: Simple text-based file exchange

protocol
– Support for status/error responses, authentication,

client-side state maintenance, cache maintenance

• How to improve performance
– Proxies
– Caching
– Persistent connections (more later)

33

Pop Quiz!

• Advantage of “fast retransmit” over timeouts?

• When are fast retransmits possible?

• When are timeouts particularly expensive?

34

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 33
	Slide 34

