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Reading: Section 9.1.2 and 9.4.3
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Spring 2013
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Recap: Client-Server Communication
• Client “sometimes on”
– Initiates a request to the 

server when interested
– E.g., Web browser on your 

laptop or cell phone
– Doesn’t communicate 

directly with other clients
– Needs to know server’s 

address

• Server is “always on”
– Handles services requests 

from many client hosts
– E.g., Web server for the 

www.cnn.com Web site
– Doesn’t initiate contact 

with the clients
– Needs fixed, known address
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http://www.cnn.com/


Outline
• HTTP overview

• Proxies
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Two Forms of Header Formats
• Fixed:  Every field (type, length) defined
– Fast parsing (good for hardware implementations)
– Not human readable
– Fairly static (IPv6 ~20 years to deploy)
– E.g., Ethernet, IP, TCP headers

• Variable length headers
– Slower parsing (hard to implement in hardware)
– Human readable
– Extensible
– E.g., HTTP (Web), SMTP (Email), XML
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HTTP Basics (Overview)
• HTTP over bidirectional byte stream (e.g. TCP)

• Interaction
– Client looks up host (DNS)
– Client sends request to server
– Server responds with data or error
– Requests/responses are encoded in text

• Stateless
– HTTP maintains no info about past client requests
– HTTP “Cookies” allow server to identify client and 

associate requests into a client session
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HTTP Request
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“cr” is \r  “lf” is \n 
sp is “ “ 



HTTP Request

• Request line
–Method
• GET – return URI
• HEAD – return headers only of GET response
• POST – send data to the server (forms, etc.)

– URL (relative)
• E.g., /index.html

– HTTP version
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HTTP Request (cont.)
• Request headers
– Variable length, human-readable
– Uses:
• Authorization – authentication info
• Acceptable document types/encodings
• From – user email
• If-Modified-Since
• Referrer – what caused this page to be requested
• User-Agent – client software

• Blank-line
• Body
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HTTP Response
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HTTP Response
• Status-line
– HTTP version (now “1.1”)
– 3 digit response code
• 1XX – informational
• 2XX – success

– 200 OK
• 3XX – redirection

– 301 Moved Permanently
– 303 Moved Temporarily
– 304 Not Modified

• 4XX – client error
– 404 Not Found

• 5XX – server error
– 505 HTTP Version Not Supported

– Reason phrase 12



HTTP Response (cont.)
• Headers
– Variable length, human-readable
– Uses:

• Location – for redirection
• Server – server software
• WWW-Authenticate – request for authentication
• Allow – list of methods supported (get, head, etc)
• Content-Encoding – E.g x-gzip
• Content-Length
• Content-Type
• Expires (caching)
• Last-Modified (caching)

• Blank-line
• Body
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HTTP Response Example
HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT
Server: Apache/1.3.14 (Unix)  (Red-Hat/Linux) mod_ssl/2.7.1 

OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24
Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
Accept-Ranges: bytes
Content-Length: 4333
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html
…..
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How to Mark End of Message? 
• Close connection
– Only server can do this
– One request per TCP connection.  Hurts performance.

• Content-Length
– Must know size of transfer in advance

• No body content.  Double CRLF marks end
– E.g., 304 never have body content

• Transfer-Encoding: chunked (HTTP/1.1)
– After headers, each chunk is content length in hex, 

CRLF,  then body. Final chunk is length 0.
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Example:  Chunked Encoding
HTTP/1.1 200 OK <CRLF>

Transfer-Encoding: chunked <CRLF>

<CRLF>

25 <CRLF>

This is the data in the first chunk <CRLF>

1A <CRLF>

and this is the second one <CRLF>

0 <CRLF>

• Especially useful for dynamically-generated content, as 
length is not a priori known
– Server would otherwise need to cache data until done 

generating, and then go back and fill-in length header before 
transmitting 16



Outline
• HTTP overview

• Proxies
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Proxies

• End host that acts a broker between client and 
server
– Speaks to server on client’s behalf

• Why?
– Privacy
– Content filtering
– Can use caching (coming up)
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Proxies (Cont.)

• Accept requests 
from multiple 
clients

• Takes request 
and reissues it 
to server

• Takes response 
and forwards to 
client
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Assignment 1: Requirements

• Non-caching, HTTP 1.0 proxy
– Support only GET requests
– No persistent connections:  1 HTTP request per 

TCP connection

• Multi-process:  use fork()

• Simple binary that takes a port number
– ./proxy 12345 (proxy listens on port 12345)

• Work in Firefox & Chrome
– Use settings to point browser to your proxy
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Assignment 1: Requirements
• What you need from a client 

request: host, port, and URI path
– GET http://www.princeton.edu:80/ HTTP/1.0

• What you send to a remote server:
– GET / HTTP/1.0
Host: www.princeton.edu:80                     
Connection: close

• Check request line and header format

• Forward the response to the client
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Why Absolute vs. Relative URLs?
• First there was one domain per server
– GET /index.html

• Then proxies introduced
– Need to specify which server
– GET http://www.cs.princeton.edu/index.hml

• Then virtual hosting: multiple domains per server
– GET /index.html
– Host: www.cs.princeton.edu

• Absolute URL still exists for historical reasons and 
backward compatibility

22



Assignment 1: Requirements

• Non-GET request?
– return “Not Implemented” (code 501)

• Unparseable request?
– return “Bad Request” (code 400)

• Use provided parsing library
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Advice

• Networking is hard
– Hard to know what’s going on in network layers
– Start out simple, test often

• Build in steps
– Incrementally add pieces
–Make sure they work
–Will help reduce the effect of “incomplete” 

information

• Assume teaching staff is non malicious or 
trying to trick you 
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Assignment 1 – Getting Started

• Modify Assn 0 to have server respond
– Simple echo of what client sent

• Modify Assn 0 to handle concurrent clients
– Use fork()

• Create “proxy” server
– Simply “repeats” client msg to a server, and 

“repeats” server msg back

• Client sends HTTP requests, proxy parses
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Summary
• HTTP:  Simple text-based file exchange 

protocol 
– Support for status/error responses, authentication, 

client-side state maintenance, cache maintenance

• How to improve performance
– Proxies
– Caching
– Persistent connections (more later)
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Pop Quiz!

• Advantage of “fast retransmit” over timeouts?

• When are fast retransmits possible?

• When are timeouts particularly expensive?
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