Network Security Protocols

Mike Freedman
COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/spr14/cos461/

Network Security

• Application layer
 – E-mail: PGP, using a web-of-trust
 – Web: HTTP-S, using a certificate hierarchy
• Transport layer
 – Transport Layer Security/ Secure Socket Layer
• Network layer
 – IP Sec
• Network infrastructure
 – DNS-Sec and BGP-Sec

Basic Security Properties

• Confidentiality:
• Authenticity:
• Integrity:
• Availability:
• Non-repudiation:
• Access control:
Encryption and MAC/Signatures

Confidentiality (Encryption)

Sender:
- Compute \(C = Enc_k(M) \)
- Send \(C \)

Receiver:
- Recover \(M = Dec_k(C) \)

Auth/Integrity (MAC / Signature)

Sender:
- Compute \(s = \text{Sig}_k(\text{Hash}(M)) \)
- Send \(<M, s>\)

Receiver:
- Compute \(s' = \text{Ver}_k(\text{Hash}(M)) \)
- Check \(s' = s \)

These are simplified forms of the actual algorithms.

Email Security:
Pretty Good Privacy (PGP)

E-Mail Security

- **Security goals**
 - Confidentiality: only intended recipient sees data
 - Integrity: data cannot be modified en route
 - Authenticity: sender and recipient are who they say

- **Security non-goals**
 - Timely or successful message delivery
 - Avoiding duplicate (replayed) message
 - (Since e-mail doesn’t provide this anyway!)

Sender and Receiver Keys

- If the sender knows the receiver’s public key
 - Confidentiality
 - Receiver authentication

- If the receiver knows the sender’s public key
 - Sender authentication
 - Sender non-repudiation
Sending an E-Mail Securely

- **Sender digitally signs the message**
 - Using the sender’s private key
- **Sender encrypts the data**
 - Using a one-time session key
 - Sending the session key, encrypted with the receiver’s public key
- **Sender converts to an ASCII format**
 - Converting the message to base64 encoding
 - (Email messages must be sent in ASCII)

Public Key Certificate

- **Binding between identity and a public key**
 - “Identity” is, for example, an e-mail address
 - “Binding” ensured using a digital signature
- **Contents of a certificate**
 - Identity of the entity being certified
 - Public key of the entity being certified
 - Identity of the signer
 - Digital signature
 - Digital signature algorithm id

Web of Trust for PGP

- **Decentralized solution**
 - Protection against government intrusion
 - No central certificate authorities
- **Customized solution**
 - Individual decides whom to trust, and how much
 - Multiple certificates with different confidence levels
- **Key-signing parties!**
 - Collect and provide public keys in person
 - Sign other’s keys, and get your key signed by others

HTTP Security
HTTP Threat Model

- Eavesdropper
 - Listening on conversation (confidentiality)
- Man-in-the-middle
 - Modifying content (integrity)
- Impersonation
 - Bogus website (authentication, confidentiality)

HTTP-S: Securing HTTP

- HTTP sits on top of secure channel (SSL/TLS)
 - TCP port 443 vs. 80
- All (HTTP) bytes encrypted and authenticated
 - No change to HTTP itself!
- Where to get the key???

HTTP-Secure Transport Layer

Learning a Valid Public Key

- What is that lock?
 - Securely binds domain name to public key (PK)
 - If PK is authenticated, then any message signed by that PK cannot be forged by non-authorized party
 - Believable only if you trust the attesting body
 - Bootstrapping problem: Who to trust, and how to tell if this message is actually from them?

Hierarchical Public Key Infrastructure

- Public key certificate
 - Binding between identity and a public key
 - “Identity” is, for example, a domain name
 - Digital signature to ensure integrity
- Certificate authority
 - Issues public key certificates and verifies identities
 - Trusted parties (e.g., VeriSign, GoDaddy, Comodo)
 - Preconfigured certificates in Web browsers
Public Key Certificate

Transport Layer Security (TLS)
Based on the earlier Secure Socket Layer (SSL) originally developed by Netscape

TLS Handshake Protocol
- Send new random value, list of supported ciphers
- Send pre-secret, encrypted under PK
- Create shared secret key from pre-secret and random
- Switch to new symmetric-key cipher using shared key

TLS Record Protocol
- Messages from application layer are:
 - Fragmented or coalesced into blocks
 - Optionally compressed
 - Integrity-protected using an HMAC
 - Encrypted using symmetric-key cipher
 - Passed to the transport layer (usually TCP)
- Sequence #5 on record-protocol messages
 - Prevents replays and reorderings of messages
Comments on HTTPS

- HTTPS authenticates server, not content
 - If CDN (Akamai) serves content over HTTPS, customer must trust Akamai not to change content

- Symmetric-key crypto after public-key ops
 - Handshake protocol using public key crypto
 - Symmetric-key crypto much faster (100-1000x)

- HTTPS on top of TCP, so reliable byte stream
 - Can leverage fact that transmission is reliable to ensure: each data segment received exactly once
 - Adversary can’t successfully drop or replay packets

IP Security

- There are range of app-specific security mechanisms
 - eg. TLS/HTTPS, S/MIME, PGP, Kerberos, ...

- But security concerns that cut across protocol layers
- Implement by the network for all applications?

Enter IPSec!

IPSec

- General IP Security framework

- Allows one to provide
 - Access control, integrity, authentication, originality, and confidentiality

- Applicable to different settings
 - Narrow streams: Specific TCP connections
 - Wide streams: All packets between two gateways
IPSec Uses

- If in a firewall/router:
 - Strong security to all traffic crossing perimeter
 - Resistant to bypass

- Below transport layer
 - Transparent to applications
 - Can be transparent to end users

- Can provide security for individual users

Benefits of IPSec

IP Security Architecture

- Specification quite complex
 - Mandatory in IPv6, optional in IPv4

- Two security header extensions:
 - Authentication Header (AH)
 - Connectionless integrity, origin authentication
 - MAC over most header fields and packet body
 - Anti-replay protection
 - Encapsulating Security Payload (ESP)
 - These properties, plus confidentiality

Encapsulating Security Payload (ESP)

- Transport mode: Data encrypted, but not header
 - After all, network headers needed for routing!
 - Can still do traffic analysis, but is efficient
 - Good for host-to-host traffic

- Tunnel mode: Encrypts entire IP packet
 - Add new header for next hop
 - Good for VPNs, gateway-to-gateway security
Replay Protection is Hard

- Goal: Eavesdropper can’t capture encrypted packet and duplicate later
 - Easy with TLS/HTTP on TCP: Reliable byte stream
 - But IP Sec at packet layer; transport may not be reliable

- IP Sec solution: Sliding window on sequence #’s
 - All IPSec packets have a 64-bit monotonic sequence number
 - Receiver keeps track of which seqno’s seen before
 - [lastest – windowsize + 1 , latest] ; windowsize typically 64 packets
 - Accept packet if
 - seqno > latest (and update latest)
 - Within window but has not been seen before
 - If reliable, could just remember last, and accept iff last + 1

Hierarchical Naming in DNS

DNS Security

- 13 root servers (see http://www.root-servers.org/)
- Labeled A through M

DNS Root Servers

- A Verisign, Dulles, VA
- C Cogent, Herndon, VA (also Los Angeles)
- D U Maryland College Park, MD
- G U US DoD Vienna, VA
- J Verisign, (11 locations)
- K RIPE London (+ Amsterdam, Frankfurt)
- L ICANN Los Angeles, CA
DoS attacks on DNS Availability

- Feb. 6, 2007
 - Botnet attack on the 13 Internet DNS root servers
 - Lasted 2.5 hours
- None crashed, but two performed badly:
 - g-root (DoD), l-root (ICANN)
 - Most other root servers use anycast

Defense: Replication and Caching

<table>
<thead>
<tr>
<th>Letter</th>
<th>Old name</th>
<th>Operator</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ns.internic.net</td>
<td>VeriSign</td>
<td>Dulles, Virginia, USA</td>
</tr>
<tr>
<td>B</td>
<td>ns1.fei.edu</td>
<td>ISI</td>
<td>Marina Del Rey, California, USA</td>
</tr>
<tr>
<td>C</td>
<td>c pris net</td>
<td>Cogent Communications</td>
<td>distributed using anycast</td>
</tr>
<tr>
<td>D</td>
<td>tarp.ums.edu</td>
<td>University of Maryland</td>
<td>College Park, Maryland, USA</td>
</tr>
<tr>
<td>E</td>
<td>ns.ripe.net</td>
<td>NASA</td>
<td>Mountain View, California, USA</td>
</tr>
<tr>
<td>F</td>
<td>ns.ac.org</td>
<td>ISIC</td>
<td>distributed using anycast</td>
</tr>
<tr>
<td>G</td>
<td>ns.rot.dns.mil</td>
<td>U.S. DoD NIC</td>
<td>Columbus, Ohio, USA</td>
</tr>
<tr>
<td>H</td>
<td>asec.at army.mil</td>
<td>U.S. Army Research Lab</td>
<td>Aberdeen-Proving Ground, Maryland, USA</td>
</tr>
<tr>
<td>I</td>
<td>nic缜.ndu.net</td>
<td>Autonome & Distribution using anycast</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Verisign</td>
<td>distributed using anycast</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>RIPE NCC</td>
<td>distributed using anycast</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>ICANN</td>
<td>Los Angeles, California, USA</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>WIDE Project</td>
<td>distributed using anycast</td>
<td></td>
</tr>
</tbody>
</table>

source: wikipedia

Denial-of-Service Attacks on Hosts

-x40 amplification

580,000 open resolvers on Internet (Kaminsky-Shiffman’06)

Preventing Amplification Attacks

- Prevent ip spoofing
- Disable open amplifiers
DNS Integrity and the TLD Operators

- If domain name doesn’t exist, DNS should return NXDOMAIN (non-existant domain) msg
- Verisign instead creates wildcard records for all .com and .net names not yet registered
 – September 15 – October 4, 2003
- Redirection for these domain names to Verisign web portal: “to help you search”
 – And serve you ads...and get “sponsored” search
 – Verisign and online advertising companies make $$

DNS Integrity: Cache Poisoning

- Was answer from an authoritative server?
 – Or from somebody else?
- DNS cache poisoning
 – Client asks for www.evil.com
 – Nameserver authoritative for www.evil.com returns additional section for (www.cnn.com, 1.2.3.4, A)
 – Thanks! I won’t bother check what I asked for

DNS Integrity: DNS Hijacking

- To prevent cache poisoning, client remembers:
 – The domain name in the request
 – A 16-bit request ID (used to demux UDP response)
- DNS hijacking
 – 16 bits: 65K possible IDs
 – What rate to enumerate all in 1 sec? 64B/packet
 – 64*65536*8 / 1024 / 1024 = 32 Mbps
- Prevention: also randomize DNS source port
 – Kaminsky attack: this source port... wasn’t random

Let’s strongly believe the answer! Enter DNSSEC

- DNSSEC protects against data spoofing and corruption
- DNSSEC also provides mechanisms to authenticate servers and requests
- DNSSEC provides mechanisms to establish authenticity and integrity

http://unixwiz.net/techtips/guide-kaminsky-dns-vuln.html
PK-DNSSEC (Public Key)

- The DNS servers sign the hash of resource record set with its private (signature) keys
 - Public keys can be used to verify the SIGs
- Leverages hierarchy:
 - Authenticity of name server’s public keys is established by a signature over the keys by the parent’s private key
 - In ideal case, only roots’ public keys need to be distributed out-of-band

Conclusions

- Security at many layers
 - Application, transport, and network layers
 - Customized to the properties and requirements
- Exchanging keys
 - Public key certificates
 - Certificate authorities vs. Web of trust
- Next time
 - Interdomain routing security
- Learn more: take COS 432 in the fall!