

Backbone Topology

Where to Locate Nodes and Links

- Placing Points-of-Presence (PoPs)
 - Large population of potential customers
 - Other providers or exchange points
 - Cost and availability of real-estate
 - Mostly in major metropolitan areas ("NFL cities")
- · Placing links between PoPs
 - Already fiber in the ground
 - Needed to limit propagation delay
 - Needed to handle the traffic load

Peering Customer B Exchange traffic between customers **Provider B** - Settlement-free • Diverse peering multiple peering locations points - Both coasts, and middle Comparable capacity at Provider A all peering points - Can handle even load **Customer A**

Combining Intradomain and Interdomain Routing

Intradomain Routing

- Compute shortest paths between routers
 - Router C takes path C-F-A to router A
- Using link-state routing protocols
 - E.g., OSPF, IS-IS

Interdomain Routing

- Learn paths to remote destinations
 - AT&T learns two paths to Yale
- Applies local policies to select a best route

An AS is Not a Single Node

- Multiple routers in an AS
 - Need to distribute BGP information within the AS
 - Internal BGP (iBGP) sessions between routers

Internal BGP and Local Preference • Both routers prefer path through AS 100 • ... even though right router learns external path AS 200 AS 300 AS 300 AS 256 I-BGP

Interdomain Routing Policy

19

Selecting a Best Path

- Routing Information Base
 - Store all BGP routes for each destination prefix
 - Withdrawal: remove the route entry
 - Announcement: update the route entry
- · BGP decision process
 - Highest local preference
 - Shortest AS path
 - Closest egress point
 - Arbitrary tie break

Import Policy: Local Preference • Favor one path over another - Override the influence of AS path length • Example: prefer customer over peer AT&T Local-pref = 90 Sprint Frinceton Tier-2

Business Relationships

- · Common relationships
 - Customer-provider
 - Peer-peer
 - Backup, sibling, ...
- ISP terminology:
 - Tier-1 (~15 worldwide): No settlement or transit
 - Tier-2 ISPs: Widespread peering, still buy transit
- · Policies implementing in BGP, e.g.,
 - Import: Ranking customer routes over peer routes
 - Export: Export only customer routes to peers and providers

25

BGP Policy Configuration

- Routing policy languages are vendor-specific
 - Not part of the BGP protocol specification
 - Different languages for Cisco, Juniper, etc.
- Still, all languages have some key features
 - List of clauses matching on route attributes
 - ... and discarding or modifying the matching routes
- Configuration done by human operators
 - Implementing the policies of their AS
 - Business relationships, traffic engineering, security

27

Backbone Traffic Engineering

Routing With "Static" Link Weights

- Routers flood information to learn topology
 - Determine "next hop" to reach other routers...
 - Compute shortest paths based on link weights
- Link weights configured by network operator

Setting the Link Weights

- How to set the weights
 - Inversely proportional to link capacity?
 - Proportional to propagation delay?
 - Network-wide optimization based on traffic?

Limitations of Shortest-Path Routing

- · Sub-optimal traffic engineering
 - Restricted to paths expressible as link weights
- Limited use of multiple paths
 - Only equal-cost multi-path, with even splitting
- · Disruptions when changing the link weights
 - Transient packet loss and delay, and out-of-order
- Slow adaptation to congestion
 - Network-wide re-optimization and configuration
- · Overhead of the management system

Run a link-state routing protocol Configurable link weights Plus other metrics like available bandwidth Constrained shortest-path computation Prune unwanted links (e.g., not enough bw) Compute shortest path on the remaining graph

Challenges for Backbone Networks

35

Challenges

- · Routing protocol scalability
 - Thousands of routers
 - Hundreds of thousands of address blocks
- Fast failover
 - Slow convergence disrupts user performance
 - Backup paths for faster recovery
 - E.g., backup path around a failed link

Challenges

Router configuration

- Adding customers, planned maintenance, traffic engineering, access control, ...
- Manual configuration is very error prone

• Measurement

- Measuring traffic, performance, routing, etc.
- To detect attacks, outages, and anomalies
- To drive traffic-engineering decisions

37

Challenges

• Diagnosing performance problems

- Incomplete control and visibility
- Combining measurement data

Security

- Defensive packet and route filtering
- Detecting and blocking denial-of-service attacks
- DNS security, detecting and blocking spam, etc.

New services

– IPv6, IPTV, ...

38

Conclusions

· Backbone networks

- Transit service for customers
- Glue that holds the Internet together

Routing challenges

- Interdomain routing policy
- Intradomain traffic engineering