
4/2/14

1

Peer-­‐to-­‐Peer	
 in	
 the	

Datacenter:	
 Amazon	
 Dynamo	

Mike	
 Freedman	

COS	
 461:	
 Computer	
 Networks	

hBp://www.cs.princeton.edu/courses/archive/spr14/cos461/	

Traditional replicated relational database systems focus on the
problem of guaranteeing strong consistency to replicated data.
Although strong consistency provides the application writer a
convenient programming model, these systems are limited in
scalability and availability [7]. These systems are not capable of
handling network partitions because they typically provide strong
consistency guarantees.

3.3 Discussion
Dynamo differs from the aforementioned decentralized storage
systems in terms of its target requirements. First, Dynamo is
targeted mainly at applications that need an “always writeable”
data store where no updates are rejected due to failures or
concurrent writes. This is a crucial requirement for many Amazon
applications. Second, as noted earlier, Dynamo is built for an
infrastructure within a single administrative domain where all
nodes are assumed to be trusted. Third, applications that use
Dynamo do not require support for hierarchical namespaces (a
norm in many file systems) or complex relational schema
(supported by traditional databases). Fourth, Dynamo is built for
latency sensitive applications that require at least 99.9% of read
and write operations to be performed within a few hundred
milliseconds. To meet these stringent latency requirements, it was
imperative for us to avoid routing requests through multiple nodes
(which is the typical design adopted by several distributed hash
table systems such as Chord and Pastry). This is because multi-
hop routing increases variability in response times, thereby
increasing the latency at higher percentiles. Dynamo can be
characterized as a zero-hop DHT, where each node maintains
enough routing information locally to route a request to the
appropriate node directly.

4. SYSTEM ARCHITECTURE
The architecture of a storage system that needs to operate in a
production setting is complex. In addition to the actual data
persistence component, the system needs to have scalable and
robust solutions for load balancing, membership and failure
detection, failure recovery, replica synchronization, overload
handling, state transfer, concurrency and job scheduling, request
marshalling, request routing, system monitoring and alarming,
and configuration management. Describing the details of each of
the solutions is not possible, so this paper focuses on the core
distributed systems techniques used in Dynamo: partitioning,
replication, versioning, membership, failure handling and scaling.

Table 1 presents a summary of the list of techniques Dynamo uses
and their respective advantages.

4.1 System Interface
Dynamo stores objects associated with a key through a simple
interface; it exposes two operations: get() and put(). The get(key)
operation locates the object replicas associated with the key in the
storage system and returns a single object or a list of objects with
conflicting versions along with a context. The put(key, context,
object) operation determines where the replicas of the object
should be placed based on the associated key, and writes the
replicas to disk. The context encodes system metadata about the
object that is opaque to the caller and includes information such as
the version of the object. The context information is stored along
with the object so that the system can verify the validity of the
context object supplied in the put request.

Dynamo treats both the key and the object supplied by the caller
as an opaque array of bytes. It applies a MD5 hash on the key to
generate a 128-bit identifier, which is used to determine the
storage nodes that are responsible for serving the key.

4.2 Partitioning Algorithm
One of the key design requirements for Dynamo is that it must
scale incrementally. This requires a mechanism to dynamically
partition the data over the set of nodes (i.e., storage hosts) in the
system. Dynamo’s partitioning scheme relies on consistent
hashing to distribute the load across multiple storage hosts. In
consistent hashing [10], the output range of a hash function is
treated as a fixed circular space or “ring” (i.e. the largest hash
value wraps around to the smallest hash value). Each node in the
system is assigned a random value within this space which
represents its “position” on the ring. Each data item identified by
a key is assigned to a node by hashing the data item’s key to yield
its position on the ring, and then walking the ring clockwise to
find the first node with a position larger than the item’s position.

A

B

C

D E

F

G

Key K

Nodes B, C
and D store

keys in
range (A,B)

including
K.

Figure 2: Partitioning and replication of keys in Dynamo
ring.

Table 1: Summary of techniques used in Dynamo and
their advantages.

Problem Technique Advantage

Partitioning Consistent Hashing Incremental
Scalability

High Availability
for writes

Vector clocks with
reconciliation during

reads

Version size is
decoupled from

update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high
availability and

durability guarantee
when some of the
replicas are not

available.

Recovering from
permanent failures

Anti-entropy using
Merkle trees

Synchronizes
divergent replicas in

the background.

Membership and
failure detection

Gossip-based
membership protocol
and failure detection.

Preserves symmetry
and avoids having a
centralized registry

for storing
membership and

node liveness
information.

199209

2	

Last	
 Lecture…	

d1	

F	
 bits	

d2	

d3	

d4	

upload	
 rate	
 us	

download	
 rates	
 di	

u1	
 u2	
 u3	

u4	

upload	
 rates	
 ui	

Internet	

3	

This	
 Lecture…	

4

Amazon’s	
 “Big	
 Data”	
 Problem	

•  Too	
 many	
 (paying)	
 users!	

– Lots	
 of	
 data	

•  Performance	
 maBers	

– Higher	
 latency	
 =	
 lower	
 “conversion	
 rate”	

•  Scalability:	
 retaining	
 performance	
 when	
 large	

4/2/14

2

5

Tiered	
 Service	
 Structure	

provide a response within 300ms for 99.9% of its requests for a
peak client load of 500 requests per second.

In Amazon’s decentralized service oriented infrastructure, SLAs
play an important role. For example a page request to one of the
e-commerce sites typically requires the rendering engine to
construct its response by sending requests to over 150 services.
These services often have multiple dependencies, which
frequently are other services, and as such it is not uncommon for
the call graph of an application to have more than one level. To
ensure that the page rendering engine can maintain a clear bound
on page delivery each service within the call chain must obey its
performance contract.

Figure 1 shows an abstract view of the architecture of Amazon’s
platform, where dynamic web content is generated by page
rendering components which in turn query many other services. A
service can use different data stores to manage its state and these
data stores are only accessible within its service boundaries. Some
services act as aggregators by using several other services to
produce a composite response. Typically, the aggregator services
are stateless, although they use extensive caching.

A common approach in the industry for forming a performance
oriented SLA is to describe it using average, median and expected
variance. At Amazon we have found that these metrics are not
good enough if the goal is to build a system where all customers
have a good experience, rather than just the majority. For
example if extensive personalization techniques are used then
customers with longer histories require more processing which
impacts performance at the high-end of the distribution. An SLA
stated in terms of mean or median response times will not address
the performance of this important customer segment. To address
this issue, at Amazon, SLAs are expressed and measured at the
99.9th percentile of the distribution. The choice for 99.9% over an
even higher percentile has been made based on a cost-benefit
analysis which demonstrated a significant increase in cost to
improve performance that much. Experiences with Amazon’s

production systems have shown that this approach provides a
better overall experience compared to those systems that meet
SLAs defined based on the mean or median.

In this paper there are many references to this 99.9th percentile of
distributions, which reflects Amazon engineers’ relentless focus
on performance from the perspective of the customers’
experience. Many papers report on averages, so these are included
where it makes sense for comparison purposes. Nevertheless,
Amazon’s engineering and optimization efforts are not focused on
averages. Several techniques, such as the load balanced selection
of write coordinators, are purely targeted at controlling
performance at the 99.9th percentile.

Storage systems often play an important role in establishing a
service’s SLA, especially if the business logic is relatively
lightweight, as is the case for many Amazon services. State
management then becomes the main component of a service’s
SLA. One of the main design considerations for Dynamo is to
give services control over their system properties, such as
durability and consistency, and to let services make their own
tradeoffs between functionality, performance and cost-
effectiveness.

2.3 Design Considerations
Data replication algorithms used in commercial systems
traditionally perform synchronous replica coordination in order to
provide a strongly consistent data access interface. To achieve this
level of consistency, these algorithms are forced to tradeoff the
availability of the data under certain failure scenarios. For
instance, rather than dealing with the uncertainty of the
correctness of an answer, the data is made unavailable until it is
absolutely certain that it is correct. From the very early replicated
database works, it is well known that when dealing with the
possibility of network failures, strong consistency and high data
availability cannot be achieved simultaneously [2, 11]. As such
systems and applications need to be aware which properties can
be achieved under which conditions.

For systems prone to server and network failures, availability can
be increased by using optimistic replication techniques, where
changes are allowed to propagate to replicas in the background,
and concurrent, disconnected work is tolerated. The challenge
with this approach is that it can lead to conflicting changes which
must be detected and resolved. This process of conflict resolution
introduces two problems: when to resolve them and who resolves
them. Dynamo is designed to be an eventually consistent data
store; that is all updates reach all replicas eventually.

An important design consideration is to decide when to perform
the process of resolving update conflicts, i.e., whether conflicts
should be resolved during reads or writes. Many traditional data
stores execute conflict resolution during writes and keep the read
complexity simple [7]. In such systems, writes may be rejected if
the data store cannot reach all (or a majority of) the replicas at a
given time. On the other hand, Dynamo targets the design space
of an “always writeable” data store (i.e., a data store that is highly
available for writes). For a number of Amazon services, rejecting
customer updates could result in a poor customer experience. For
instance, the shopping cart service must allow customers to add
and remove items from their shopping cart even amidst network
and server failures. This requirement forces us to push the
complexity of conflict resolution to the reads in order to ensure
that writes are never rejected.

Figure 1: Service-oriented architecture of Amazon’s
platform

197207

Stateless	

Stateless	

All	
 of	
 the	

State	

Stateless	

6

Horizontal	
 or	
 VerWcal	
 Scalability?	

VerWcal	
 Scaling	
 Horizontal	
 Scaling	

7

Horizontal	
 Scaling	
 is	
 ChaoWc	

•  k	
 =	
 probability	
 a	
 machine	
 fails	
 in	
 given	
 period	

•  n	
 =	
 number	
 of	
 machines	

•  1-­‐(1-­‐k)n	
 =	
 probability	
 of	
 any	
 failure	
 in	
 given	
 period	

•  For	
 50K	
 machines,	
 with	
 online	
 Wme	
 of	
 99.99966%:	

–  16%	
 of	
 the	
 Wme,	
 data	
 center	
 experiences	
 failures	

–  For	
 100K	
 machines,	
 30%	
 of	
 the	
 Wme!	

8

Dynamo	
 Requirements	

•  High	
 Availability	

– Always	
 respond	
 quickly,	
 even	
 during	
 failures	

– Replica+on!	

•  Incremental	
 Scalability	

– Adding	
 “nodes”	
 should	
 be	
 seamless	

•  Comprehensible	
 Conflict	
 ResoluWon	

– High	
 availability	
 in	
 above	
 sense	
 implies	
 conflicts	

4/2/14

3

9

Dynamo	
 Design	

•  Key-­‐Value	
 Store	
 via	
 DHT	
 over	
 data	
 nodes	

– get(k)	
 and	
 put(k,	
 v)	

•  QuesWons:	

– ReplicaWon	
 of	
 Data	

– Handling	
 Requests	
 in	
 Replicated	
 System	

– Temporary	
 and	
 Permanent	
 Failures	

– Membership	
 Changes	

10

Data	
 ParWWoning	
 and	
 Data	
 ReplicaWon	

•  Familiar?	

•  Nodes	
 are	
 virtual!	

– Heterogeneity	

•  ReplicaWon:	

–  Coordinator	
 Node	

– N-­‐1	
 successors	
 also	

– Nodes	
 keep	

preference	
 list	

Traditional replicated relational database systems focus on the
problem of guaranteeing strong consistency to replicated data.
Although strong consistency provides the application writer a
convenient programming model, these systems are limited in
scalability and availability [7]. These systems are not capable of
handling network partitions because they typically provide strong
consistency guarantees.

3.3 Discussion
Dynamo differs from the aforementioned decentralized storage
systems in terms of its target requirements. First, Dynamo is
targeted mainly at applications that need an “always writeable”
data store where no updates are rejected due to failures or
concurrent writes. This is a crucial requirement for many Amazon
applications. Second, as noted earlier, Dynamo is built for an
infrastructure within a single administrative domain where all
nodes are assumed to be trusted. Third, applications that use
Dynamo do not require support for hierarchical namespaces (a
norm in many file systems) or complex relational schema
(supported by traditional databases). Fourth, Dynamo is built for
latency sensitive applications that require at least 99.9% of read
and write operations to be performed within a few hundred
milliseconds. To meet these stringent latency requirements, it was
imperative for us to avoid routing requests through multiple nodes
(which is the typical design adopted by several distributed hash
table systems such as Chord and Pastry). This is because multi-
hop routing increases variability in response times, thereby
increasing the latency at higher percentiles. Dynamo can be
characterized as a zero-hop DHT, where each node maintains
enough routing information locally to route a request to the
appropriate node directly.

4. SYSTEM ARCHITECTURE
The architecture of a storage system that needs to operate in a
production setting is complex. In addition to the actual data
persistence component, the system needs to have scalable and
robust solutions for load balancing, membership and failure
detection, failure recovery, replica synchronization, overload
handling, state transfer, concurrency and job scheduling, request
marshalling, request routing, system monitoring and alarming,
and configuration management. Describing the details of each of
the solutions is not possible, so this paper focuses on the core
distributed systems techniques used in Dynamo: partitioning,
replication, versioning, membership, failure handling and scaling.

Table 1 presents a summary of the list of techniques Dynamo uses
and their respective advantages.

4.1 System Interface
Dynamo stores objects associated with a key through a simple
interface; it exposes two operations: get() and put(). The get(key)
operation locates the object replicas associated with the key in the
storage system and returns a single object or a list of objects with
conflicting versions along with a context. The put(key, context,
object) operation determines where the replicas of the object
should be placed based on the associated key, and writes the
replicas to disk. The context encodes system metadata about the
object that is opaque to the caller and includes information such as
the version of the object. The context information is stored along
with the object so that the system can verify the validity of the
context object supplied in the put request.

Dynamo treats both the key and the object supplied by the caller
as an opaque array of bytes. It applies a MD5 hash on the key to
generate a 128-bit identifier, which is used to determine the
storage nodes that are responsible for serving the key.

4.2 Partitioning Algorithm
One of the key design requirements for Dynamo is that it must
scale incrementally. This requires a mechanism to dynamically
partition the data over the set of nodes (i.e., storage hosts) in the
system. Dynamo’s partitioning scheme relies on consistent
hashing to distribute the load across multiple storage hosts. In
consistent hashing [10], the output range of a hash function is
treated as a fixed circular space or “ring” (i.e. the largest hash
value wraps around to the smallest hash value). Each node in the
system is assigned a random value within this space which
represents its “position” on the ring. Each data item identified by
a key is assigned to a node by hashing the data item’s key to yield
its position on the ring, and then walking the ring clockwise to
find the first node with a position larger than the item’s position.

A

B

C

D E

F

G

Key K

Nodes B, C
and D store

keys in
range (A,B)

including
K.

Figure 2: Partitioning and replication of keys in Dynamo
ring.

Table 1: Summary of techniques used in Dynamo and
their advantages.

Problem Technique Advantage

Partitioning Consistent Hashing Incremental
Scalability

High Availability
for writes

Vector clocks with
reconciliation during

reads

Version size is
decoupled from

update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high
availability and

durability guarantee
when some of the
replicas are not

available.

Recovering from
permanent failures

Anti-entropy using
Merkle trees

Synchronizes
divergent replicas in

the background.

Membership and
failure detection

Gossip-based
membership protocol
and failure detection.

Preserves symmetry
and avoids having a
centralized registry

for storing
membership and

node liveness
information.

199209

11

Handling	
 Requests	

•  Request	
 coordinator	

consults	
 replicas	

–  How	
 many?	

•  Forward	
 to	
 N	
 replicas	

from	
 preference	
 list	

–  R	
 or	
 W	
 responses	
 form	
 a	

read/write	
 quorum	

•  Any	
 of	
 top	
 N	
 in	
 pref	
 list	

can	
 handle	
 req	

–  Load	
 balancing	
 &	
 fault	

tolerance	

Traditional replicated relational database systems focus on the
problem of guaranteeing strong consistency to replicated data.
Although strong consistency provides the application writer a
convenient programming model, these systems are limited in
scalability and availability [7]. These systems are not capable of
handling network partitions because they typically provide strong
consistency guarantees.

3.3 Discussion
Dynamo differs from the aforementioned decentralized storage
systems in terms of its target requirements. First, Dynamo is
targeted mainly at applications that need an “always writeable”
data store where no updates are rejected due to failures or
concurrent writes. This is a crucial requirement for many Amazon
applications. Second, as noted earlier, Dynamo is built for an
infrastructure within a single administrative domain where all
nodes are assumed to be trusted. Third, applications that use
Dynamo do not require support for hierarchical namespaces (a
norm in many file systems) or complex relational schema
(supported by traditional databases). Fourth, Dynamo is built for
latency sensitive applications that require at least 99.9% of read
and write operations to be performed within a few hundred
milliseconds. To meet these stringent latency requirements, it was
imperative for us to avoid routing requests through multiple nodes
(which is the typical design adopted by several distributed hash
table systems such as Chord and Pastry). This is because multi-
hop routing increases variability in response times, thereby
increasing the latency at higher percentiles. Dynamo can be
characterized as a zero-hop DHT, where each node maintains
enough routing information locally to route a request to the
appropriate node directly.

4. SYSTEM ARCHITECTURE
The architecture of a storage system that needs to operate in a
production setting is complex. In addition to the actual data
persistence component, the system needs to have scalable and
robust solutions for load balancing, membership and failure
detection, failure recovery, replica synchronization, overload
handling, state transfer, concurrency and job scheduling, request
marshalling, request routing, system monitoring and alarming,
and configuration management. Describing the details of each of
the solutions is not possible, so this paper focuses on the core
distributed systems techniques used in Dynamo: partitioning,
replication, versioning, membership, failure handling and scaling.

Table 1 presents a summary of the list of techniques Dynamo uses
and their respective advantages.

4.1 System Interface
Dynamo stores objects associated with a key through a simple
interface; it exposes two operations: get() and put(). The get(key)
operation locates the object replicas associated with the key in the
storage system and returns a single object or a list of objects with
conflicting versions along with a context. The put(key, context,
object) operation determines where the replicas of the object
should be placed based on the associated key, and writes the
replicas to disk. The context encodes system metadata about the
object that is opaque to the caller and includes information such as
the version of the object. The context information is stored along
with the object so that the system can verify the validity of the
context object supplied in the put request.

Dynamo treats both the key and the object supplied by the caller
as an opaque array of bytes. It applies a MD5 hash on the key to
generate a 128-bit identifier, which is used to determine the
storage nodes that are responsible for serving the key.

4.2 Partitioning Algorithm
One of the key design requirements for Dynamo is that it must
scale incrementally. This requires a mechanism to dynamically
partition the data over the set of nodes (i.e., storage hosts) in the
system. Dynamo’s partitioning scheme relies on consistent
hashing to distribute the load across multiple storage hosts. In
consistent hashing [10], the output range of a hash function is
treated as a fixed circular space or “ring” (i.e. the largest hash
value wraps around to the smallest hash value). Each node in the
system is assigned a random value within this space which
represents its “position” on the ring. Each data item identified by
a key is assigned to a node by hashing the data item’s key to yield
its position on the ring, and then walking the ring clockwise to
find the first node with a position larger than the item’s position.

A

B

C

D E

F

G

Key K

Nodes B, C
and D store

keys in
range (A,B)

including
K.

Figure 2: Partitioning and replication of keys in Dynamo
ring.

Table 1: Summary of techniques used in Dynamo and
their advantages.

Problem Technique Advantage

Partitioning Consistent Hashing Incremental
Scalability

High Availability
for writes

Vector clocks with
reconciliation during

reads

Version size is
decoupled from

update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high
availability and

durability guarantee
when some of the
replicas are not

available.

Recovering from
permanent failures

Anti-entropy using
Merkle trees

Synchronizes
divergent replicas in

the background.

Membership and
failure detection

Gossip-based
membership protocol
and failure detection.

Preserves symmetry
and avoids having a
centralized registry

for storing
membership and

node liveness
information.

199209

12

DetecWng	
 Failures	

•  Purely	
 Local	
 Decision	

– Node	
 A	
 may	
 decide	
 independently	
 that	
 B	
 has	
 failed	

–  In	
 response,	
 requests	
 go	
 further	
 in	
 preference	
 list	

•  A	
 request	
 hits	
 an	
 unsuspecWng	
 node	
 	

– “temporary	
 failure”	
 handling	
 occur	

4/2/14

4

Traditional replicated relational database systems focus on the
problem of guaranteeing strong consistency to replicated data.
Although strong consistency provides the application writer a
convenient programming model, these systems are limited in
scalability and availability [7]. These systems are not capable of
handling network partitions because they typically provide strong
consistency guarantees.

3.3 Discussion
Dynamo differs from the aforementioned decentralized storage
systems in terms of its target requirements. First, Dynamo is
targeted mainly at applications that need an “always writeable”
data store where no updates are rejected due to failures or
concurrent writes. This is a crucial requirement for many Amazon
applications. Second, as noted earlier, Dynamo is built for an
infrastructure within a single administrative domain where all
nodes are assumed to be trusted. Third, applications that use
Dynamo do not require support for hierarchical namespaces (a
norm in many file systems) or complex relational schema
(supported by traditional databases). Fourth, Dynamo is built for
latency sensitive applications that require at least 99.9% of read
and write operations to be performed within a few hundred
milliseconds. To meet these stringent latency requirements, it was
imperative for us to avoid routing requests through multiple nodes
(which is the typical design adopted by several distributed hash
table systems such as Chord and Pastry). This is because multi-
hop routing increases variability in response times, thereby
increasing the latency at higher percentiles. Dynamo can be
characterized as a zero-hop DHT, where each node maintains
enough routing information locally to route a request to the
appropriate node directly.

4. SYSTEM ARCHITECTURE
The architecture of a storage system that needs to operate in a
production setting is complex. In addition to the actual data
persistence component, the system needs to have scalable and
robust solutions for load balancing, membership and failure
detection, failure recovery, replica synchronization, overload
handling, state transfer, concurrency and job scheduling, request
marshalling, request routing, system monitoring and alarming,
and configuration management. Describing the details of each of
the solutions is not possible, so this paper focuses on the core
distributed systems techniques used in Dynamo: partitioning,
replication, versioning, membership, failure handling and scaling.

Table 1 presents a summary of the list of techniques Dynamo uses
and their respective advantages.

4.1 System Interface
Dynamo stores objects associated with a key through a simple
interface; it exposes two operations: get() and put(). The get(key)
operation locates the object replicas associated with the key in the
storage system and returns a single object or a list of objects with
conflicting versions along with a context. The put(key, context,
object) operation determines where the replicas of the object
should be placed based on the associated key, and writes the
replicas to disk. The context encodes system metadata about the
object that is opaque to the caller and includes information such as
the version of the object. The context information is stored along
with the object so that the system can verify the validity of the
context object supplied in the put request.

Dynamo treats both the key and the object supplied by the caller
as an opaque array of bytes. It applies a MD5 hash on the key to
generate a 128-bit identifier, which is used to determine the
storage nodes that are responsible for serving the key.

4.2 Partitioning Algorithm
One of the key design requirements for Dynamo is that it must
scale incrementally. This requires a mechanism to dynamically
partition the data over the set of nodes (i.e., storage hosts) in the
system. Dynamo’s partitioning scheme relies on consistent
hashing to distribute the load across multiple storage hosts. In
consistent hashing [10], the output range of a hash function is
treated as a fixed circular space or “ring” (i.e. the largest hash
value wraps around to the smallest hash value). Each node in the
system is assigned a random value within this space which
represents its “position” on the ring. Each data item identified by
a key is assigned to a node by hashing the data item’s key to yield
its position on the ring, and then walking the ring clockwise to
find the first node with a position larger than the item’s position.

A

B

C

D E

F

G

Key K

Nodes B, C
and D store

keys in
range (A,B)

including
K.

Figure 2: Partitioning and replication of keys in Dynamo
ring.

Table 1: Summary of techniques used in Dynamo and
their advantages.

Problem Technique Advantage

Partitioning Consistent Hashing Incremental
Scalability

High Availability
for writes

Vector clocks with
reconciliation during

reads

Version size is
decoupled from

update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high
availability and

durability guarantee
when some of the
replicas are not

available.

Recovering from
permanent failures

Anti-entropy using
Merkle trees

Synchronizes
divergent replicas in

the background.

Membership and
failure detection

Gossip-based
membership protocol
and failure detection.

Preserves symmetry
and avoids having a
centralized registry

for storing
membership and

node liveness
information.

199209

13

Handling	
 Temporary	
 Failures	

X	

Add	
 E	
 to	
 the	
 replica	
 set!	

•  E	
 is	
 in	
 replica	
 set	

–  Needs	
 to	
 receive	
 replica	

–  Hinted	
 Handoff:	
 replica	

contains	
 “original”	
 node	

•  When	
 C	
 comes	
 back	

–  E	
 forwards	
 the	
 replica	

back	
 to	
 C	

14

Managing	
 Membership	

•  Peers	
 randomly	
 tell	
 another	
 their	
 known	

membership	
 history	
 –	
 “gossiping”	

•  Also	
 called	
 epidemic	
 algorithm	

– Knowledge	
 spreads	
 like	
 a	
 disease	
 through	
 system	

– Great	
 for	
 ad	
 hoc	
 systems,	
 self-­‐configuraWon,	
 etc.	

– Does	
 this	
 make	
 sense	
 in	
 Amazon’s	
 environment?	

15

Gossip	
 could	
 parWWon	
 the	
 ring	

•  Possible	
 Logical	
 ParWWons	

– A	
 and	
 B	
 choose	
 to	
 join	
 ring	
 at	
 about	
 same	
 Wme:	

Unaware	
 of	
 one	
 another,	
 may	
 take	
 long	
 Wme	
 to	

converge	
 to	
 one	
 another	

•  SoluWon:	

– Use	
 seed	
 nodes	
 to	
 reconcile	
 membership	
 views:	

Well-­‐known	
 peers	
 that	
 are	
 contacted	
 frequently	

16

Why	
 is	
 Dynamo	
 Different?	

•  So	
 far,	
 looks	
 a	
 lot	
 like	
 normal	
 p2p	

•  Amazon	
 wants	
 to	
 use	
 this	
 for	
 applicaWon	
 data!	

•  Lots	
 of	
 potenWal	
 synchronizaWon	
 problems	

•  Uses	
 versioning	
 to	
 provide	
 eventual	
 consistency.	

4/2/14

5

17

Consistency	
 Problems	

•  Shopping	
 Cart	
 Example:	

– Object	
 is	
 a	
 history	
 of	
 “adds”	
 and	
 “removes”	

– All	
 adds	
 are	
 important	
 (trying	
 to	
 make	
 money)	

Client:	

Put(k,	
 [+1	
 Banana])	

Z	
 =	
 get(k)	

Put(k,	
 Z	
 +	
 [+1	
 Banana])	

Z	
 =	
 get(k)	

Put(k,	
 Z	
 +	
 [-­‐1	
 Banana])	

Expected	
 Data	
 at	
 Server:	

[+1	
 Banana]	

[+1	
 Banana,	
 +1	
 Banana]	

[+1	
 Banana,	
 +1	
 Banana,	
 -­‐1	
 Banana]	

18

What	
 if	
 a	
 failure	
 occurs?	

Client:	

Put(k,	
 [+1	
 Banana])	

Z	
 =	
 get(k)	

Put(k,	
 Z	
 +	
 [+1	
 Banana])	

Z	
 =	
 get(k)	

Put(k,	
 Z	
 +	
 [-­‐1	
 Banana])	

Data	
 on	
 Dynamo:	

[+1	
 Banana]	
 at	
 A	

A	
 Crashes	

B	
 not	
 in	
 first	
 Put’s	
 quorum	

[+1	
 Banana]	
 	
 at	
 B	

[+1	
 Banana,	
 -­‐1	
 Banana]	
 at	
 B	

Node	
 A	
 Comes	
 Online	

At	
 this	
 point,	
 Node	
 A	
 and	
 B	
 disagree	
 about	
 object	
 state	

•  How	
 is	
 this	
 resolved?	

•  Can	
 we	
 even	
 tell	
 a	
 conflict	
 exists?	

19

“Time”	
 is	
 largely	
 a	
 human	
 construct	

•  What	
 about	
 Wme-­‐stamping	
 objects?	

–  Could	
 authoritaWvely	
 say	
 whether	
 object	
 newer	
 or	
 older?	

–  But,	
 all	
 events	
 are	
 not	
 necessarily	
 witnessed	

•  If	
 system’s	
 noWon	
 of	
 Wme	
 corresponds	
 to	
 “real-­‐Wme”…	

–  New	
 object	
 always	
 blasts	
 away	
 older	
 versions	

–  Even	
 though	
 those	
 versions	
 may	
 have	
 important	
 updates	
 	
 	
 	
 	
 	

(as	
 in	
 bananas	
 example).	

•  Requires	
 a	
 new	
 noWon	
 of	
 Wme	
 (causal	
 in	
 nature)	

•  Anyhow,	
 real-­‐Wme	
 is	
 impossible	
 in	
 any	
 case	

20

Causality	

•  Objects	
 are	
 causally	
 related	
 if	
 value	
 of	
 one	
 object	

depends	
 on	
 (or	
 witnessed)	
 the	
 previous	

•  Conflicts	
 can	
 be	
 detected	
 when	
 replicas	
 contain	

causally	
 independent	
 objects	
 for	
 a	
 given	
 key	

•  NoWon	
 of	
 Wme	
 which	
 captures	
 causality?	

4/2/14

6

21

Versioning	

•  Key	
 Idea:	
 	
 Every	
 PUT	
 includes	
 a	
 version,	
 indicaWng	

most	
 recently	
 witnessed	
 version	
 of	
 updated	
 object	

•  Problem:	
 replicas	
 may	
 have	
 diverged	

–  No	
 single	
 authoritaWve	
 version	
 number	
 (or	
 “clock”	
 number)	

–  NoWon	
 of	
 Wme	
 must	
 use	
 a	
 par+al	
 ordering	
 of	
 events	

22

Vector	
 Clocks	

•  Every	
 replica	
 has	
 its	
 own	
 logical	
 clock	

–  Incremented	
 before	
 it	
 sends	
 a	
 message	

•  Every	
 message	
 aBached	
 with	
 vector	
 version	

–  Includes	
 originator’s	
 clock	

–  Highest	
 seen	
 logical	
 clocks	
 for	
 each	
 replica	

•  If	
 M1	
 is	
 causally	
 dependent	
 on	
 M0:	

–  Replica	
 sending	
 M1	
 will	
 have	
 seen	
 M0	

–  Replica	
 will	
 have	
 seen	
 clocks	
 ≥	
 all	
 clocks	
 in	
 M0	

23

Vector	
 Clocks	
 in	
 Dynamo	

Dynamo has access to multiple branches that cannot be
syntactically reconciled, it will return all the objects at the leaves,
with the corresponding version information in the context. An
update using this context is considered to have reconciled the
divergent versions and the branches are collapsed into a single
new version.

To illustrate the use of vector clocks, let us consider the example
shown in Figure 3. A client writes a new object. The node (say
Sx) that handles the write for this key increases its sequence
number and uses it to create the data's vector clock. The system
now has the object D1 and its associated clock [(Sx, 1)]. The
client updates the object. Assume the same node handles this
request as well. The system now also has object D2 and its
associated clock [(Sx, 2)]. D2 descends from D1 and therefore
over-writes D1, however there may be replicas of D1 lingering at
nodes that have not yet seen D2. Let us assume that the same
client updates the object again and a different server (say Sy)
handles the request. The system now has data D3 and its
associated clock [(Sx, 2), (Sy, 1)].

Next assume a different client reads D2 and then tries to update it,
and another node (say Sz) does the write. The system now has D4
(descendant of D2) whose version clock is [(Sx, 2), (Sz, 1)]. A
node that is aware of D1 or D2 could determine, upon receiving
D4 and its clock, that D1 and D2 are overwritten by the new data
and can be garbage collected. A node that is aware of D3 and
receives D4 will find that there is no causal relation between
them. In other words, there are changes in D3 and D4 that are not
reflected in each other. Both versions of the data must be kept and
presented to a client (upon a read) for semantic reconciliation.

 Now assume some client reads both D3 and D4 (the context will
reflect that both values were found by the read). The read's
context is a summary of the clocks of D3 and D4, namely [(Sx, 2),
(Sy, 1), (Sz, 1)]. If the client performs the reconciliation and node
Sx coordinates the write, Sx will update its sequence number in
the clock. The new data D5 will have the following clock: [(Sx,
3), (Sy, 1), (Sz, 1)].

A possible issue with vector clocks is that the size of vector
clocks may grow if many servers coordinate the writes to an

object. In practice, this is not likely because the writes are usually
handled by one of the top N nodes in the preference list. In case of
network partitions or multiple server failures, write requests may
be handled by nodes that are not in the top N nodes in the
preference list causing the size of vector clock to grow. In these
scenarios, it is desirable to limit the size of vector clock. To this
end, Dynamo employs the following clock truncation scheme:
Along with each (node, counter) pair, Dynamo stores a timestamp
that indicates the last time the node updated the data item. When
the number of (node, counter) pairs in the vector clock reaches a
threshold (say 10), the oldest pair is removed from the clock.
Clearly, this truncation scheme can lead to inefficiencies in
reconciliation as the descendant relationships cannot be derived
accurately. However, this problem has not surfaced in production
and therefore this issue has not been thoroughly investigated.

4.5 Execution of get () and put () operations
Any storage node in Dynamo is eligible to receive client get and
put operations for any key. In this section, for sake of simplicity,
we describe how these operations are performed in a failure-free
environment and in the subsequent section we describe how read
and write operations are executed during failures.

Both get and put operations are invoked using Amazon’s
infrastructure-specific request processing framework over HTTP.
There are two strategies that a client can use to select a node: (1)
route its request through a generic load balancer that will select a
node based on load information, or (2) use a partition-aware client
library that routes requests directly to the appropriate coordinator
nodes. The advantage of the first approach is that the client does
not have to link any code specific to Dynamo in its application,
whereas the second strategy can achieve lower latency because it
skips a potential forwarding step.

A node handling a read or write operation is known as the
coordinator. Typically, this is the first among the top N nodes in
the preference list. If the requests are received through a load
balancer, requests to access a key may be routed to any random
node in the ring. In this scenario, the node that receives the
request will not coordinate it if the node is not in the top N of the
requested key’s preference list. Instead, that node will forward the
request to the first among the top N nodes in the preference list.

 Read and write operations involve the first N healthy nodes in the
preference list, skipping over those that are down or inaccessible.
When all nodes are healthy, the top N nodes in a key’s preference
list are accessed. When there are node failures or network
partitions, nodes that are lower ranked in the preference list are
accessed.

To maintain consistency among its replicas, Dynamo uses a
consistency protocol similar to those used in quorum systems.
This protocol has two key configurable values: R and W. R is the
minimum number of nodes that must participate in a successful
read operation. W is the minimum number of nodes that must
participate in a successful write operation. Setting R and W such
that R + W > N yields a quorum-like system. In this model, the
latency of a get (or put) operation is dictated by the slowest of the
R (or W) replicas. For this reason, R and W are usually
configured to be less than N, to provide better latency.

Upon receiving a put() request for a key, the coordinator generates
the vector clock for the new version and writes the new version
locally. The coordinator then sends the new version (along with

Figure 3: Version evolution of an object over time.

201211

•  Vector	
 clock	
 per	
 object	

•  get()	
 returns	
 obj’s	
 vector	
 clock	

•  put()	
 has	
 most	
 recent	
 clock	

–  Coordinator	
 is	
 “originator”	

•  Serious	
 conflicts	
 are	
 	
 	
 	
 	
 	

resolved	
 	
 	
 by	
 app	
 /	
 client	

24

Vector	
 Clocks	
 in	
 Banana	
 Example	

Client:	

Put(k,	
 [+1	
 Banana])	

Z	
 =	
 get(k)	

Put(k,	
 Z	
 +	
 [+1	
 Banana])	

Z	
 =	
 get(k)	

Put(k,	
 Z	
 +	
 [-­‐1	
 Banana])	

Data	
 on	
 Dynamo:	

[+1]	
 	
 	
 v=[(A,1)]	
 	
 	
 at	
 A	

A	
 Crashes	

B	
 not	
 in	
 first	
 Put’s	
 quorum	

[+1]	
 	
 	
 v=[(B,1)] 	
 	
 at	
 B	

[+1,-­‐1]	
 	
 	
 v=[(B,2)] 	
 	
 at	
 B	

A	
 Comes	
 Online	

[(A,1)]	
 and	
 [(B,2)]	
 are	
 a	
 conflict!	

4/2/14

7

25

Eventual	
 Consistency	

•  Versioning,	
 by	
 itself,	
 does	
 not	
 guarantee	
 consistency	

–  If	
 you	
 don’t	
 require	
 a	
 majority	
 quorum,	
 you	
 need	
 to	

periodically	
 check	
 that	
 peers	
 aren’t	
 in	
 conflict	

–  How	
 oven	
 do	
 you	
 check	
 that	
 events	
 are	
 not	
 in	
 conflict?	

•  In	
 Dynamo:	

–  Nodes	
 consult	
 with	
 one	
 another	
 using	
 a	
 tree	
 hashing	

(Merkel	
 tree)	
 scheme	

–  Quickly	
 idenWfy	
 whether	
 they	
 hold	
 different	
 versions	
 of	

parWcular	
 objects	
 and	
 enter	
 conflict	
 resoluWon	
 mode	

26

NoSQL	

•  NoWce	
 that	
 Eventual	
 Consistency	
 and	
 ParWal	

Orderings	
 do	
 not	
 give	
 you	
 ACID!	

•  Rise	
 of	
 NoSQL	
 (outside	
 of	
 academia)	

– Memcache	

–  Cassandra	

–  Redis	

–  Big	
 Table	

– MongoDB	

