4/2114

Peer-to-Peer in the
Datacenter: Amazon Dynamo

Mike Freedman
COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/spri4/cos461/

Last Lecture...

upload rates u;
download rates d;

This Lecture...

z
=
2
=z
Z
7

A\

Amazon’s “Big Data” Problem

* Too many (paying) users!
— Lots of data

* Performance matters
— Higher latency = lower “conversion rate”

* Scalability: retaining performance when large

4/2114

Tiered Service Structure

Client Requests

Stateless G O
~. .
Stateless
Stateless
All of the ‘
State

Horizontal or Vertical Scalability?

Vertical Scaling

Horizontal Scaling

Horizontal Scaling is Chaotic
k = probability a machine fails in given period
n = number of machines

1-(1-k)" = probability of any failure in given period

For 50K machines, with online time of 99.99966%:

— 16% of the time, data center experiences failures

— For 100K machines, 30% of the time!

Dynamo Requirements

High Availability

— Always respond quickly, even during failures
— Replication!

Incremental Scalability

— Adding “nodes” should be seamless

Comprehensible Conflict Resolution
— High availability in above sense implies conflicts

4/2114

Dynamo Design

* Key-Value Store via DHT over data nodes
— get(k) and put(k, v)

* Questions:
— Replication of Data
— Handling Requests in Replicated System
— Temporary and Permanent Failures
— Membership Changes

Data Partitioning and Data Replication

Familiar?
Nodes are virtual!
— Heterogeneity

/ Key K
SOk
(©) (

/

! { Nodes B, C

\ i and D store

keys in

range (A,B)

Y including
\ S
©_ e/

Replication:

— Coordinator Node
K.

— N-1 successors also

— Nodes keep
preference list

Handling Requests

Request coordinator
consults replicas
— How many?

/ Key K
\\

(% NodesB,C

Forward to N replicas

| ©
from preference list !
\ and D store
— R or Wresponses form a @ @ | keys[i:B
read/write quorum range (AB)

\\ / i including
Any of top N in pref list @ @

K
can handle req

— Load balancing & fault
tolerance

Detecting Failures

* Purely Local Decision

— Node A may decide independently that B has failed
— In response, requests go further in preference list

* Arequest hits an unsuspecting node

— “temporary failure” handling occur

4/2114

Handling Temporary Failures

e Eisinreplica set
— Needs to receive replica

— Hinted Handoff: replica
P

contains “original” node \ Nodes B, C

. and D store

L keysin

range (A,B)

including
K

* When C comes back

— E forwards the replica
back to C

Add E to the replica set!

Managing Membership

* Peers randomly tell another their known
membership history — “gossiping”

* Also called epidemic algorithm
— Knowledge spreads like a disease through system
— Great for ad hoc systems, self-configuration, etc.

— Does this make sense in Amazon’s environment?

Gossip could partition the ring

* Possible Logical Partitions

— A and B choose to join ring at about same time:
Unaware of one another, may take long time to
converge to one another

e Solution:

— Use seed nodes to reconcile membership views:
Well-known peers that are contacted frequently

Why is Dynamo Different?

So far, looks a lot like normal p2p

Amazon wants to use this for application data!

Lots of potential synchronization problems

Uses versioning to provide eventual consistency.

4/2114

Consistency Problems

* Shopping Cart Example:
— Object is a history of “adds” and “removes”

— All adds are important (trying to make money)

Client:

Put(k, [+1 Banana])
Z=get(k

Put(k, Z + [+1 Banana
Z=get(k

Put(k, Z + [-1 Banana

Expected Data at Server:
[+1 Banana]
[+1 Banana, +1 Banana]

[+1 Banana, +1 Banana, -1 Bananal

What if a failure occurs?

Client: Data on Dynamo:
Put(k, [+1 Banana]) [+1 Banana] at A

Z = get(k) A Crashes

Put(k, Z + [+1 Banana]) B not in first Put’s quorum
Z = get(k) [+1 Banana] atB

+1B , -1 B t B
Put(k, Z + [-1 Banana]) [anana anana] a

Node A Comes Online

At this point, Node A and B disagree about object state
* How is this resolved?
* Can we even tell a conflict exists?

“Time” is largely a human construct

¢ What about time-stamping objects?
— Could authoritatively say whether object newer or older?
— But, all events are not necessarily witnessed

 If system’s notion of time corresponds to “real-time”...
— New object always blasts away older versions

— Even though those versions may have important updates

(as in bananas example).

¢ Requires a new notion of time (causal in nature)

* Anyhow, real-time is impossible in any case

Causality

Objects are causally related if value of one object
depends on (or witnessed) the previous

Conflicts can be detected when replicas contain
causally independent objects for a given key

Notion of time which captures causality?

4/2114

Versioning

e Key Idea: Every PUT includes a version, indicating

most recently witnessed version of updated object

* Problem: replicas may have diverged

— No single authoritative version number (or “clock” number)

— Notion of time must use a partial ordering of events

Vector Clocks

e Every replica has its own logical clock
— Incremented before it sends a message

* Every message attached with vector version
— Includes originator’s clock
— Highest seen logical clocks for each replica

* If M, is causally dependent on M:
— Replica sending M, will have seen M,
— Replica will have seen clocks 2 all clocks in M,

Vector clock per object

Vector Clocks in Dynamo

write
handled by Sx

D1 ([Sx,1])
get() returns obj’s vector clock J e BsE
put() has most recent clock D2 (15x21)

Serious conflicts are

. s s ” write write
— Coordinator is “originator handled by Sy handled by Sz

D3 ([Sx,2].[Sy.1]) D4 ([Sx,2],[Sz,1])

resolved by app / client \ l/an'gj‘;;;;g‘:”by

Sx

D5 ([Sx,3],[Sy,11[Sz,1])

Vector Clocks in Banana Example

Client: Data on Dynamo:

Put(k, [+1 Banana]) [+1] v=[(A,1)] atA
A Crashes

7= get(k)

Put(k, Z + [+1 Banana]) B not in first Put’s quorum

7 = get(k) (+1] v=[(8,1)] atB

Put(k, Z + [-1 Banana])

[+1,-1] v=[(B,2)] atB
A Comes Online

[(A,1)] and [(B,2)] are a conflict!

Eventual Consistency

* Versioning, by itself, does not guarantee consistency

— If you don’t require a majority quorum, you need to
periodically check that peers aren’t in conflict

— How often do you check that events are not in conflict?

¢ In Dynamo:

— Nodes consult with one another using a tree hashing
(Merkel tree) scheme

— Quickly identify whether they hold different versions of

particular objects and enter conflict resolution mode

NoSQL

Notice that Eventual Consistency and Partial
Orderings do not give you ACID!

Rise of NoSQL (outside of academia)
— Memcache

— Cassandra

— Redis

— Big Table

— MongoDB

4/2114

