Peer-to-Peer File Sharing

Mike Freedman
COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/sprl4/cos461/

Server Distributing a Large File

download rates d; MQ@

Server Distributing a Large File

* Sending an F-bit file to N receivers
— Transmitting NF bits at rate u;
— ... takes at least NF/u_time

* Receiving the data at the slowest receiver
— Slowest receiver has download rate d,;,,= min{d;}
— ... takes at least F/d

min time

* Download time: max{NF/u, F/d, ..}

Speeding Up the File Distribution

* Increase the server upload rate
— Higher link bandwidth at the server
— Multiple servers, each with their own link

* Alternative: have the receivers help

— Receivers get a copy of the data
— ... and redistribute to other receivers
— To reduce the burden on the server

Peers Help Distributing a Large File

e
E

upload rates u; —7Q
download rates d, %

Peers Help Distributing a Large File

* Components of distribution latency
— Server must send each bit: min time F/u,

— Slowest peer must receive each bit: min time F/d,;,

* Upload time using all upload resources

— Total number of bits: NF
— Total upload bandwidth u, + sum(u))

* Total: max{F/u,, F/d,,;,, NF/(utsumu))}

Peer-to-Peer is Self-Scaling

Download time grows slowly with N
— Client-server: max{NF/u , F/d,;.}

— Peer-to-peer: max{f/u,, F/d ., NF/(utsumu))}
But...

— Peers may come and go

— Peers need to find each other

— Peers need to be willing to help each other

Locating the Relevant Peers

* Three main approaches
— Central directory (Napster)
— Query flooding (Gnutella)
— Hierarchical overlay (Kazaa, modern Gnutella)

* Design goals
— Scalability
— Simplicity
— Robustness
— Plausible deniability

Peer-to-Peer Networks: Napster Napster Directory Service

* Napster history: the rise ¢ Napster history: the fall

Client contacts Napster (via TCP)

—1/99: Napster version 1.0 — Mid 2001: out of — Provides a list of music files it will share
—5/99: company founded business due to lawsuits — ... and Napster’s central server updates the directory
— - fi i — Mid 2001:d f . .
12/99: first lawsuits q ! trali Zzs;;c’ * Client searches on a title or performer
—2000: 80 million users ecentralize N)
alternatives — Napster identifies online clients with the file

— 2003: growth of pay — ... and provides their IP addresses
services like iTunes

* Client requests the file from the chosen supplier

— Supplier transmits the file to the client
Shawn Fanning,

— Both client and supplier report status to Napster
Northeastern freshman s "
Napster Properties Napster: Limitations of Directory
* Server’s directory continually updated * File transfer is decentralized, but locating
— Always know what music is currently available content is highly centralized
— Point of vulnerability for legal action — Single point of failure
. — Perf bottl k
* Peer-to-peer file transfer e Or,man,ce _0 enec
— Copyright infringement
— No load on the server

— Plausible deniability for legal action (but not enough)

* So, later P2P systems were more distributed
* Bandwidth

— Gnutella went to the other extreme...
— Suppliers ranked by apparent bandwidth and

response time

Peer-to-Peer Networks: Gnutella

* Gnutella history
—2000: J. Frankel &

T. Pepper released
Gnutella

— Soon after: many other

clients (e.g., Morpheus,
Limewire, Bearshare)

—2001: protocol

enhancements, e.g.,
“ultrapeers”

* Query flooding

— Join: contact a few nodes
to become neighbors

— Publish: no need!

— Search: ask neighbors, who
ask their neighbors

— Fetch: get file directly from

another node i

Gnutella: Search by Flooding

Flooding

Gnutella: Search by Flooding

Gnutella: Search by Flooding

Gnutella: Pros and Cons

* Advantages
— Fully decentralized
— Search cost distributed

— Processing per node permits powerful search
semantics

* Disadvantages
— Search scope may be quite large
— Search time may be quite long
— High overhead, and nodes come and go often

Lessons and Limitations

* Client-Server performs well
— But not always feasible: Performance not often key issue!

For the following, you should choose a system that’s
(A) Flood-based (B) DHT-based (C) Either (D) Neither
— Organic scaling
— Decentralization of visibility and liability
— Finding popular stuff
— Finding unpopular stuff
— Fancy local queries
— Fancy distributed queries
— Prevent data poisoning
— Performance guarantees

Lessons and Limitations

* Client-Server performs well
— But not always feasible: Performance not often key issue!

For the following, you should choose a system that’s
(A) Flood-based (B) DHT-based (C) Both (D) Neither
— Organic scaling: C
— Decentralization of visibility and liability: C
— Finding popular stuff: A (maybe C)
— Finding unpopular stuff: B
— Fancy local queries: A
— Fancy distributed queries: D
— Prevent data poisoning: B (depends on query interface)
— Performance guarantees: B

Peer-to-Peer Networks: KaAzA

* KaZaA history

— 2001: created by Dutch
company (Kazaa BV)

* Super-node hierarchy
— Join: on start, the client
contacts a super-node

— Publish: client sends list
of files to its super-node

— Single network called
FastTrack used by other

clients as well — Search: queries flooded

— Eventually protocol among super-nodes
changed so others

— Fetch: get file directly
could no longer use it

from one or more peers

L{@Z-‘.

“Ultra/super peers” in
KaZaA and later Gnutella

KaZaA: Motivation for Super-Nodes

* Query consolidation
— Many connected nodes may have only a few files
— Propagating query to a sub-node may take more
time than for the super-node to answer itself
* Stability
— Super-node selection favors nodes with high up-time

— How long you’ve been on is a good predictor of how
long you’ll be around in the future

Peer-to-Peer Networks: BitTorrent

* BitTorrent history
— 2002: B. Cohen debuted BitTorrent

* Emphasis on efficient fetching, not searching
— Distribute same file to many peers
— Single publisher, many downloaders

* Preventing free-loading
— Incentives for peers to contribute

(«d BitTorrent

BitTorrent: Simultaneous Downloads

* Divide file into many chunks (e.g., 256 KB)
— Replicate different chunks on different peers
— Peers can trade chunks with other peers
— Peer can (hopefully) assemble the entire file

* Allows simultaneous downloading
— Retrieving different chunks from different peers
— And uploading chunks to peers
— Important for very large files

BitTorrent: Overall Architecture

Web Server

Tracker

BitTorrent: Tracker

* Infrastructure node

— Keeps track of peers participating in the torrent
— Peers registers with the tracker when it arrives
* Tracker selects peers for downloading

— Returns a random set of peer IP addresses
— So the new peer knows who to contact for data

* Can have “trackerless” system
— Using distributed hash tables (DHTs)

.IOrren ¢

Peer
[Leech]

Downloader
“Wus”

26

Peer
[Seed]

Peer
[Leech]

BitTorrent: Overall Architecture

- Web Server
®
<\°°‘\

BitTorrent: Overall Architecture

Tracker

- Web Server Tracker

Peer
[Seed]

— -

5
Peer
[Leech] - [Leech]
Downloader Peer Downloader Peer
27 “US” [Leech] 28 “US” [Leech]

BitTorrent: Overall Architecture

Web Server Tracker

Shake-hand

Peer
[Seed]

S4
Peer e"'&b
3/70,

[Leech]
Downloader Peer

20 "US” [Leech]

BitTorrent: Overall Architecture

Web Server Tracker

pieces

Peer
[Seed]

[Leech]
Downloader Peer
s "US” [Leech]

BitTorrent: Overall Architecture

- Web Server .

pieces

Tracker

Peer

[Leech]
Downloader Peer

a1 “US” [Leech]

BitTorrent: Overall Architecture

- Web Server

Tracker

[Leech]
Downloader Peer
2 “US” [Leech]

BitTorrent: Chunk Request Order

* Which chunks to request?
— Could download in order
— Like an HTTP client does

* Problem: many peers have the early chunks
— Peers have little to share with each other
— Limiting the scalability of the system

* Problem: eventually nobody has rare chunks
— E.g., the chunks need the end of the file
— Limiting the ability to complete a download

* Solutions: random selection and rarest first

33

BitTorrent: Rarest Chunk First

Which chunks to request first?
— Chunk with fewest available copies (i.e., rarest chunk)

Benefits to the peer
— Avoid starvation when some peers depart

Benefits to the system
— Avoid starvation across all peers wanting a file
— Balance load by equalizing # of copies of chunks

Free-Riding in P2P Networks

* Vast majority of users are free-riders
— Most share no files and answer no queries
— Others limit # of connections or upload speed

* Afew “peers” essentially act as servers
— A few individuals contributing to the public good
— Making them hubs that basically act as a server

* BitTorrent prevent free riding
— Allow the fastest peers to download from you
— Occasionally let some free loaders download

Bit-Torrent: Preventing Free-Riding

Peer has limited upload bandwidth
— And must share it among multiple peers
— Tit-for-tat: favor neighbors uploading at highest rate

Rewarding the top four neighbors
— Measure download bit rates from each neighbor
— Reciprocate by sending to the top four peers

Optimistic unchoking

— Randomly try a new neighbor every 30 seconds
— So new neighbor has a chance to be a better partner

BitTyrant: Gaming BitTorrent

BitTorrent can be gamed, too

— Peer uploads to top N peers at rate 1/N

—E.g., if N=4 and peers upload at 15, 12, 10, 9, 8, 3
— ... peer uploading at rate 9 gets treated quite well

Best to be the Nt peer in the list, rather than 15t
— Offer just a bit more bandwidth than low-rate peers
— And you’ll still be treated well by others

BitTyrant software http://bittyrant.cs.washington.edu/
— Uploads at higher rates to higher-bandwidth peers

Conclusions

* Finding the appropriate peers
— Centralized directory (Napster)
— Query flooding (Gnutella)
— Super-nodes (KaZaA)
* BitTorrent
— Distributed download of large files
— Anti-free-riding techniques

* Great example of how change can happen so
quickly in application-level protocols

38

10

