Multicast and Anycast

Mike Freedman
COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/spr14/cos461/

Outline today

• IP Anycast
 – N destinations, 1 should receive the message
 – Providing a service from multiple network locations
 – Using routing protocols for automated failover

• Multicast protocols
 – N destinations, N should receive the message
 – Examples
 • IP Multicast
 • SRM (Scalable Reliable Multicast)
 • PGM (Pragmatic General Multicast)
Limitations of DNS-based failover

- Failover/load balancing via multiple A records

 ;; ANSWER SECTION:

 www.cnn.com. 300 IN A 157.166.255.19
 www.cnn.com. 300 IN A 157.166.224.25
 www.cnn.com. 300 IN A 157.166.226.26
 www.cnn.com. 300 IN A 157.166.255.18

- If server fails, service unavailable for TTL
 - Very low TTL: Extra load on DNS
 - Anyway, browsers cache DNS mappings 😊

- What if root NS fails? All DNS queries take > 3s?

Motivation for IP anycast

- Failure problem: client has resolved IP address
 - What if IP address can represent many servers?

- Load-balancing/failover via IP addr, rather than DNS

- IP anycast is simple reuse of existing protocols
 - Multiple instances of a service share same IP address
 - Each instance announces IP address / prefix in BGP / IGP
 - Routing infrastructure directs packets to nearest instance of the service
 - Can use same selection criteria as installing routes in the FiB
 - No special capabilities in servers, clients, or network

IP anycast in action
DNS lookup for http://www.server.com/ produces a single answer:

www.server.com. IN A 10.0.0.1
IP anycast in action

From client/router perspective, topology could as well be:

![IP anycast diagram](image)

Routing Table from Router 1:*

<table>
<thead>
<tr>
<th>Destination</th>
<th>Mask</th>
<th>Next-Hop</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.0.0</td>
<td>/29</td>
<td>127.0.0.1</td>
<td>0</td>
</tr>
<tr>
<td>10.0.0.1</td>
<td>/32</td>
<td>192.168.0.1</td>
<td>1</td>
</tr>
<tr>
<td>10.0.0.1</td>
<td>/32</td>
<td>192.168.0.2</td>
<td>2</td>
</tr>
</tbody>
</table>

Downsides of IP anycast

- Many Tier-1 ISPs ingress filter prefixes > /24
 - Publish a /24 to get a “single” anycasted address: Poor utilization
- Scales poorly with the # anycast groups
 - Each group needs entry in global routing table
- Not trivial to deploy
 - Obtain an IP prefix and AS number; speak BGP

Downsides of IP anycast

- Subject to the limitations of IP routing
 - No notion of load or other application-layer metrics
 - Convergence time can be slow (as BGP or IGP converge)
- Failover doesn’t really work with TCP
 - TCP is stateful: if switch destination replicas, other server instances will just respond with RSTs
 - May react to network changes, even if server online
- Root nameservers (UDP) are anycasted, little else

Multicast
Multicast

- **Many receivers**
 - Receiving the same content
- **Applications**
 - Video conferencing
 - Online gaming
 - IP television (IPTV)
 - Financial data feeds

Iterated Unicast

- **Unicast message to each recipient**
- **Advantages**
 - Simple to implement
 - No modifications to network
- **Disadvantages**
 - High overhead on sender
 - Redundant packets on links
 - Sender must maintain list of receivers

IP Multicast

- **Embed receiver-driven tree in network layer**
 - Sender sends a single packet to the group
 - Receivers “join” and “leave” the tree
- **Advantages**
 - Low overhead on the sender
 - Avoids redundant network traffic
- **Disadvantages**
 - Control-plane protocols for multicast groups
 - Overhead of duplicating packets in the routers

Multicasting messages

- **Simple application multicast**: Iterated unicast
 - Client simply unicasts message to every recipient
 - **Pros**: simple to implement, no network modifications
 - **Cons**: O(n) work on sender, network
- **Advanced overlay multicast (“peer-to-peer”)**
 - Build receiver-driven tree
 - **Pros**: Scalable, no network modifications
 - **Cons**: O(log n) work on sender, network; complex to implement
- **IP multicast**
 - Embed receiver-driven tree in network layer
 - **Pros**: O(1) work on client, O(# receivers) on network
 - **Cons**: requires network modifications; scalability concerns?
Multicast Tree

- **Source-based tree**
 - Separate tree for each sender
 - Tree is optimized for that sender
 - But, requires multiple trees for multiple senders

- **Shared tree**
 - One common tree
 - Spanning tree that reaches all participants
 - Single tree may be inefficient
 - But, avoids having many different trees

IP multicast in action

- **Multicast “group” defined by IP address**
 - Multicast addresses look like unicast addresses
 - 224.0.0.0 to 239.255.255.255

- **Using multicast IP addresses**
 - Sender sends to the IP address
 - Receivers join the group based on IP address
 - Network sends packets along the tree
Example Multicast Protocol

- Receiver sends a “join” messages to the sender
 - And grafts to the tree at the nearest point

IGMP v1

- Two types of IGMP msgs (both have IP TTL of 1)
 - Host membership query: Routers query local networks to discover which groups have members
 - Host membership report: Hosts report each group (e.g., multicast addr) to which belong, by broadcast on net interface from which query was received

- Routers maintain group membership
 - Host senders an IGMP “report” to join a group
 - Multicast routers periodically issue host membership query to determine liveness of group members
 - Note: No explicit “leave” message from clients

IGMP: Improvements

- IGMP v2 added:
 - If multiple routers, one with lowest IP elected querier
 - Explicit leave messages for faster pruning
 - Group-specific query messages

- IGMP v3 added:
 - Source filtering: Join specifies multicast “only from” or “all but from” specific source addresses

IGMP: Parameters and Design

- Parameters
 - Maximum report delay: 10 sec
 - Membership query internal default: 125 sec
 - Time-out interval: $270 = 2 \times (\text{query interval} + \text{max delay})$

- Router tracks each attached network, not each peer

- Should clients respond immediately to queries?
 - Random delay (from 0..D) to minimize responses to queries
 - Only one response from single broadcast domain needed

- What if local networks are layer-2 switched?
 - L2 switches typically broadcast multicast traffic out all ports
 - Or, IGMP snooping (sneak peek into layer-3 contents), Cisco’s proprietary protocols, or static forwarding tables
IP Multicast is Best Effort

- Sender sends packet to IP multicast address
 - Loss may affect multiple receivers

Challenges for Reliable Multicast

- Send an ACK, much like TCP?
 - ACK-implosion if all destinations ACK at once
 - Source does not know # of destinations
- How to retransmit?
 - To all? One bad link affects entire group
 - Only where losses? Loss near sender makes retransmission as inefficient as replicated unicast
- Negative acknowledgments more common

Scalable Reliable Multicast

- Data packets sent via IP multicast
 - Data includes sequence numbers
- Upon packet failure
 - If failures relatively rare, use Negative ACKs (NAKs) instead: “Did not receive expected packet”
 - Sender issues heartbeats if no real traffic. Receiver knows when to expect (and thus NAK)

Handling Failure in SRM

- Receiver multicasts a NAK
 - Or send NAK to sender, who multicasts confirmation
- Scale through NAK suppression
 - If received a NAK or NCF, don’t NAK yourself
 - Add random delays before NAK’ing
- Repair through packet retransmission
 - From initial sender
 - From designated local repairer
Pragmatic General Multicast (RFC 3208)

- Similar approach as SRM: IP multicast + NAKs
 - ... but more techniques for scalability
- Hierarchy of PGM-aware network elements
 - NAK suppression: Similar to SRM
 - NAK elimination: Send at most one NAK upstream
 - Or completely handle with local repair!
 - Constrained forwarding: Repair data can be suppressed downstream if no NAK seen on that port
 - Forward-error correction: Reduce need to NAK
- Works when only sender is multicast-able

Outline today

- IP Anycast
 - N destinations, 1 should receive the message
 - Providing a service from multiple network locations
 - Using routing protocols for automated failover

- Multicast protocols
 - N destinations, N should receive the message
 - Examples
 - IP Multicast and IGMP
 - SRM (Scalable Reliable Multicast)
 - PGM (Pragmatic General Multicast)